COSMOLOGY

and PARTICLE PHYSICS

An Astrophysicist's Viewpoint

Masataka Fukugita

ICRR, University of Tokyo Institute for Advanced Study

11

OUTLINE OF MODERN COSMOLOGY

Paradigms

- 1. Big Bang & Friedmann cosmology (h, Ω, λ)
- 2. Cold Dark Matter (CDM) dominated
- 3. Inflation: seed of fluctuations

$$\Omega = \rho/\rho_0$$
, $\lambda = \Lambda/3H_0^2$, $(\Omega + \lambda = 1 \text{ for flat})$
 $H_0 = 100h \text{ km/s Mpc}$

Status:

Basic understanding is achieved for the evolution of the universe (except for a very early epoch) and Cosmic Structure

Formation of cosmic structure:

Growth of Gaussian noise in an expanding universe (gravitational instability)

Cooling: Efficient (galaxies), or non-efficient (clusters) $M < 10^{12} M_{\odot} \qquad \qquad M > 10^{13} M_{\odot}$

Power spectrum

Understanding of non-linear evolution

- N-Body simulation
 - Press-Schechter statistical approach + spherical collapse

$$P(\delta > \delta_c) = \int_{\delta_c}^{\infty} d\delta \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\delta}{2\sigma^2}\right)$$
$$\sigma = \sigma(M, z) \propto P(k)/D(z)$$

Objects with $\delta > \delta_c$ decouples from cosmic expansion and collapse into bound systems (vilialised)

Clusters: gravity only $(t_{\rm cool} > t_{\rm dyn})$

Galaxies: complicated physical processes

Cosmological Test: Verification of the Idea

Do we get a consistent set of (h, Ω, λ) ?

Collapsed matter fraction

HUBBLE CONSTANT

• Set the scale (length and age) of the Universe

Excellent convergence in Extragalactic Distance Scale

$$H_0=71\pm7$$
 km/s Mpc

provided that LMC distance = 50 kpc

The Problems

1. Distance to LMC: uncertain by 20%

$$H_0 = (71 \pm 7) * \begin{cases} 0.95 \\ 1.15 \end{cases}$$

- 2. Metallicity Dependence: 5% error
- 3. Extinction: 5% error

(See Review in RPP2000)

COSMIC AGE

Minimum 12 ± 1 Gyr, Maximum 18 ± 2 Gyr

depends on the LMC distance
 & interpretation of globular cluster formation

Often quoted:

Cepheid (Saha-Sandage photometry) + SNIa Hubble Diagram

 $H_0 = 64 \pm 4$ km/s Mpc

Cepheid photometry (+ Extinction correction)

1. Saha-Sandage

64

2. HST-KP reanalysis (2000)

68

3. Willick-Batra (2000)

73

The most accurate secondary indicators

SNIa Hubble Diagram: $H_0 = 68 \pm 4$

SBF (Blakeslee et al. 2000): 74±4 (or 77±6)

Take overlapping range: $H_0 = 71\pm7$ km/s Mpc

SN Cosmology Project

Ω: Crucial Parameter for Structure Formation

- Ω controls structure formation
- λ is a "compensation" to $\Omega \neq 1$

Determination of Ω (and λ)

Model independent

• $H_0 - t_0$ matching: $t_0 = H_0^{-1} f(\Omega, \lambda)$

 $\Omega < 0.7$

• Luminosity density + M/L: $\Omega = \mathcal{L}\langle M/L \rangle$

 $\Omega = 0.1 - 0.4$

• peculiar velocity - density relation: $\nabla \cdot v_p = -H_0 \Omega^{0.6} \delta$

 $\Omega = 0.2 - 1$

 \checkmark • cluster baryon fraction: $f_b = \Omega_b/\Omega$

 $\Omega = 0.2 - 0.5$

• SNIa Hubble diagram: $d_L = d_L(\Omega, \lambda)$

 $\Omega = 0.8\lambda - 0.4$

• Gravitational lensing frequency: $\tau \approx \tau(\lambda)$

 $\lambda < 0.8$

Structure-Formation Model dependent

cluster abundance evolution

 $\Omega = 0.2 - 1$

• Transfer function shape parameter: $\Gamma = \Omega h$

 $\Omega = 0.2 - 0.4$

Cluster abundance vs COBE:

 $\sigma_8 \Omega^{0.5} \approx 0.6$ and $Q = 2 \times 10^{-5}$ See below

✓ ◆CMB acoustic peak: $\ell_1 \approx 220[(1-\lambda)/\Omega]^{1/2}$

See below

- NEW CMB EXPERIMENTS

FLAT UNIVERSE

BOOMERANG EXPERIMENT

301001

S Dalax

Jaffed J.

Jathe stal.

New CMB Experiments (2000):

BOOMERanG & MAXIMA

Boomerang (Balloon in Antarctica) 5% of 1998 data MAXIMA (Balloon in Texas, 1998, 1999) only 1998 data

- Consistent with previous data, but much higher accuracy
- Position of the first peak securely measured: $\ell \simeq 200$
 - → flat universe compelling

- $n = 1 \pm 0.15$ (95%); 'pure defects' are excluded
- Second peak smaller than was thought
 - \rightarrow high baryon abundance (+ red tilt: n < 1)

 $\Omega_b h^2 > 0.019$ is compelling

$$\Omega_b h^2 > 0.03(n-1) + 0.024 (90\%)$$

Marginally consistent with BBN value $(0.017 < \Omega_b h^2 < 0.023)$

•
$$\Omega \simeq 0.3^{+0.3}_{-0.1}$$
 $h \simeq 0.75 \pm 0.15$

$$h \simeq 0.75 \pm 0.15$$

0 85 KM K0 98

Lange et al. (Boomerang)

likelihood likelihood

Balbi et al. (MAXIMA)

PAola Jaffe et al. (Boomerang+MAXIMA) likelihood likelihood Tegmark & Zaldarriaga

Bridle et al. (Cambridge)

likelihood

Hu et al. (IAS)

parametrised

Form of Matter

Baryon

Consistent baryon abundance only at high end of BBN value

$$\Omega_b h^2 = 0.042 \pm 0.004 \text{ @h} = 0.7 \quad (\Omega_b h^2 = 0.021 \pm 0.002)$$

$$\Omega_{\rm star} \simeq 0.004 \pm 0.002 \ @h=0.7$$

Where are the rest?

Mostly warm/cool gas around galaxies

• Neutrinos: At least $\Omega_{\nu}h^2 \geq 0.0005$

They aren't useful for Structure Formation

Limit from CMB + LSS + BBN baryons:

$$\Sigma < 4 \; {\rm eV} \; (90\%)$$
: $\Omega_{\nu} < 0.04 \; @h{=}0.7$

- Presence of Cold Dark Matter ($\Omega = 0.3 \pm$): compelling
 - from Ω mismatch
 - from CMB fluctuations

Understandable with weak scale physics Dress, Dure

PA-096

Strongly interacting dark matter??

Overproduction of small scale structure with CDM

Astrophysics, or

Dark matter property (Spergel-Steinhardt+, Goodman, Kaplinghat et al.)

Hu ald. $\sum m_0 = 4aV$ 0.9 0.8 0.7

 $0.6 - \frac{1}{f_b}$ $0.5 - \frac{1}{0.2}$ $0.4 - \frac{1}{0.6}$ 0.8 $\Omega_{\rm m}$

• MACHO — Massive Compact Halo Object PA-69

→ Gravitational microlensing

LMC - observed expected MACHO (5.7 yr) 13-17 \sim 70 EROS (8 yr) 3 (+1) \sim 27

• Existence of microlensing: yes

Are they dark matter (MACHO): ??

f = MACHO/total dark matter in halo

For $10^{-7} - 10^{-2} M_{\odot}$ f < 0.12

For $\approx 0.5 M_{\odot}$ $f \approx 0.2$: MACHO f < 0.4 (at 95%): EROS

not MS stars; white dwarfs?

NB: 2 events are associated with L/SMC

- No significant dark matter in the $10^{-7} 10^{-2} M_{\odot}$ range
- MACHO, if any, cannot be the entire dark matter

Cosmological Constant Problems

- Why $\Lambda \approx 0$?
- Why $\Lambda \neq 0$
- Time varying Λ: Quintessence (Peebles-Ratra, Steinhardt et al.)

Tracker solution (attractor): Zlatev, Wang, Steinherdt 1999

$$V \sim M^{4+\alpha} \phi^{-\alpha}$$

Tune M so that ϕ field dominates after MD

k-essence: Take special form of kinetic term $P[(\nabla \phi)^2]$, so that ϕ always dominates after MD (Armendariz-Picon et al. 2000)

2. Use of exact symmetry (supersymmetry) (Witten 1994, 2000)

D=3 SUSY: $m_F \neq m_B$ when matter interacts gravity

But
$$Q|0\rangle = 0$$
 and $[Q, H] = 0$, so $\Lambda = 0$

dilaton coupling constant $g \to \infty$: $3D \to 4D$ (?)

Ultra-mini inflation (false vacuum) (Watari, Nomura, Yanagida 2000)

938

$$\rho_V = 0$$
 for vacuum (assumed)

We are still in a false vacuum

Use of Electroweak instanton: $\Lambda \sim (\phi_0/M_{pl})^2 m_{\rm SUSY}^2 M_{pl}^2 \exp(-8\pi/g_{\rm ew}^2)$

3. Anthropic principle (Weinberg 1987-2000; Efstathiou; Vilenkin)

Consider ensemble of universes where ρ_v (and ρ_m) varies

We can live only with $\rho_V < \rho_m$ at $1 + z \sim 4 - 5$

$$\rightarrow \rho_V < 100 \rho_m$$

Further exploration: 'Principle of mediocrity'

$$Prob(\leq \rho_V = 0.7) = \int_0^{\rho_V} dP \approx 10\%$$

V(4)

Inflation

Scalar field dynamics:
$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$

Slow role regime:
$$\epsilon = \frac{m_{pl}^2}{16\pi} (V'/V)^2 \ll 1$$
, $\eta = \frac{m_{pl}^2}{8\pi^2} (V''/V) \ll 1$

Observational Constraints:

•
$$\Omega + \lambda = 1$$

•
$$N_{\rm e-fold} \ge 50$$

•
$$\frac{V^{3/2}}{M_{pl}^3 V'} = 4 \times 10^{-6}$$
 from $Q = 2 \times 10^{-5}$ (COBE normalisation)

• Tilt
$$n \neq 1$$
 0.85 < $n < 0.98$ (if BBN is respected)

< 1.16 (if BBN constraint loosened)

• Tensor pert'n T/S < 0.5(?) Yet to be worked out

Example

$$V = m\phi^2$$
 (Chaotic inflation)

n = 0.96, Just consistent at the upper end

$$T/S = 0.14$$

$$\phi_{\rm phys} = 2.8 M_{pl}, \qquad m = 2 \times 10^{13} \text{ GeV}$$

Model

- Are particle parameters acceptable?
- Are the models consistent with particle physics idea?

Inflation: Classification of Models

1. ϕ^{α} potential: Chaotic type (start at large ϕ)

 $\phi_{\rm phys} > a \text{ few} \times m_{pl} \text{ (super Planck scale physics)}$

n < 1, significant tensor

2. $V_0[1-(\frac{\phi}{\mu})^p]$ type "New inflation" (start at $\phi \simeq 0$)

 $\phi_{\rm end} < m_{pl}$

n < 1, small tensor

difficulty in the initial condition (cf. topological inflation)

Can these models be consistent with particle physics idea?

3. Hybrid – two fields (start at 'large' ϕ)

 $n \gtrsim 1$, small tensor

An interesting model exists within supergravity theory (Copeland et al.; Linde & Riotto):

$$V = \frac{1}{4}\lambda(\sigma^2 - M^2)^2 + \frac{1}{2}m^2\phi^2 + \frac{1}{2}\kappa\phi^2\sigma^2$$

Lolen #803

But, difficulty in the initial condition (Tetradis 1998, see Mendes & Liddle 2000, however), and in required superhorizon spatial homogeneity (e.g., Vachaspati & Trodden 2000).

So many models, but none seems really attractive ...

Conceptual innovation: Eternal inflation

'Multiverse'; Is Big Bang necessary?

Linde Tree

Anthropic Principle: Use or Misuse?

We can exist, simply because parameters are adjusted that way

So many parameters are finely tuned:

Providence or Coincidence?

- Ω_Λ ≈ Ω_−
- $\Omega_{\rm CDM}$, Ω_b , $\Omega_{\nu} = O(1)$: (Very close to 1 at high z) Galaxy formation and Longevity
- $Q(CMB) \approx 10^{-5\pm 1}$ (Rees 1997) ~ $\sqrt{1/v'}$

- $\begin{cases} \bullet \ \langle v_{\rm ew} \rangle = 250 \ {\rm GeV} & ({\rm Agrawal\ et\ al.\ 1998}) \\ \bullet \ m_d m_u = 2 \pm 1 \ {\rm MeV} & ({\rm Hogan\ 2000}) \\ \bullet \ \epsilon = {\rm BE}(^4{\rm He})/{\rm M}(^4{\rm He}) = 0.007 \pm 0.001 & ({\rm Rees\ 2000}) \end{cases}$
- Nuclear potential: e.g. ¹²C resonance just above ⁸Be +α 4% shift of the resonance level makes ¹²C unformed (Hoyle)

....etc.

I want to ultimately understand that, with all the particle physics worked out, life is possible in the universe because π is between 3.14159 and 3.1416. To me, understanding this would be the real anthropic principle. (Witten)

Baryogenesis

$$\eta = n_b/n_\gamma \approx 5 \times 10^{-10}$$

• GUT:

Reheat temperature $T < M_{\rm GUT}$, gravitino problem

- purely electroweak (w/ KRS sphaleron): $m_{\tilde{t}} < m_t$ needed; how to make large CP violation?
- leptogenesis + KRS sphaleron:
- Affleck-Dine baryogenesis:
- Affleck-Dine leptogenesis + KRS sphaleron: strong restriction: $m_{\nu} < 10^{-8} \text{ eV}$

CONCLUSIONS

- 1. Understanding of cosmic structure formation: tightened
- Important impact from the new CMB experiments (Boomerang, MAXIMA)
- 3. Universe is close to flat.
 - Open universe is excluded
 - EdS Universe ($\Omega = 1$) is excluded
 - Non-zero cosmological constant is compelling

4. Ω concordance:

Cosmological parameters are converging:

$$H_0 = 62 - 83$$
, $\Omega \simeq 0.25 - 0.48$, $\lambda = 0.75 - 0.52$

- We need:
 - 1. Vacuum energy $\rho_V \ (= \Lambda)$
 - 2. Cold dark matter $m_{\rm CDM}$
 - 3. Scalar field(s) (Inflaton) ϕ

We can't have successful cosmology, otherwise

- · Particle physics part is still poorly understood
 - Many models, but none is natural and successful, or
 - Many models, and one cannot choose among them
- What is the role of the Anthropic Principle?

