

The BABAR Collaboration

USA

France

[5/50]

[3/21]

[12/89]

[35/276] LAPP, Annecy California Institute of Technology LAL Orsay LPNHE des Universités Paris 6/7 Ecole Polytechnique CEA, DAPNIA, CE-Saclay Germany U Rostock Ruhr U Bochum Technische U Dresden

Italy

INFN. Bari INFN, Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova INFN, Milano INFN, Napoli INFN, Padova INFN. Pavia INF. Pisa INFNN, Roma and U "La Sapienza" INFN, Torino INFN, Trieste

Norway [1/3]

U of Bergen

Russia

Budker Institute, Novosibirsk

United Kingdom [10/80]

[1/13]

U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool Imperial College Queen Mary & Westfield College Royal Holloway, University of London U of Manchester Rutherford Appleton Laboratory

9 Countries **72 Institutions 554** Physicists

UC, Irvine UC, Los Angeles UC, San Diego UC, Santa Barbara UC, Santa Cruz U of Cincinnati U of Colorado Colorado State Florida A&M U of Iowa Iowa State U LBNL LLNL U of Louisville U of Maryland U of Massachusetts, Amherst MIT U of Mississippi Mount Holyoke College Northern Kentucky U U of Notre Dame ORNL/Y-12 U of Oregon U of Pennsylvania Prairie View A&M Princeton SLAC U of South Carolina Stanford U U of Tennessee U of Texas at Dallas Vanderbilt U of Wisconsin Yale

Canada [4/16]

U of British Columbia McGill U U de Montréal U of Victoria

China [1/6]Inst. of High Energy Physics, Beijing

2

David Hitlin

ICHEP2000

Outline of the talk

- PEP-II and *BABAR*
- Selected measurements
 - *B* lifetimes
 - \bigcirc *B* mixing
 - \bigcirc *J*/ ψ *K** polarization
 - $\pi\pi$, *K* π , *KK* branching ratios
- Measurement of *CP*-violating asymmetries in *B* decays to *CP* eigenstates
 - Isolating and tagging the *CP* sample
 - Determining the Δz resolution
 - Determining the mistag fractions
 - Determining the *CP*-violating asymmetries
- Conclusion

PEP-II and BABAR

4

David Hitlin

ICHEP2000

July 31, 2000

5

Star 1

BABAR talks at ICHEP2000

Parallel Sessions

- Study of inclusive and exclusive *B* decays to charmonium final states with *BABAR*. Gerhard Raven, UCSD
- BABAR results on B decays to D^* and $D_s^{(*)}$. Gloria Vuagnin, Universita' di Trieste
- Study of *B* lifetime and mixing with fullyreconstructed *B⁰* decays with *BABAR*.
 Fernando Martinez-Vidal, Univ. Paris VI et VII
- BABAR results on B lifetime and mixing with partially-reconstructed B⁰ decays. Christophe Yeche, Saclay
- *BABAR* study of the decays B->K*gamma, $B \rightarrow Kl^+l^-$ and $B \rightarrow K^*l^+l^-$. Colin Jessop, SLAC
- Study of charmless two-body, three-body and quasi-two-body *B* decays with *BABAR*. Theresa Champion, Univ. of Birmingham
- DIRC The particle identification system for *BABAR*.
 - J. Schwiening, SLAC

Plenary Session

• First Physics Results from *BABAR* David Hitlin, Caltech

Dilepton Mixing: Results

$\pi\pi$, *K* π , *KK* Branching Fraction Results

Global likelihood fit using m_{ES} , ΔE , Fisher discriminant, and Cherenkov angle measured in DIRC

Mode	N_s	Stat. Sig. (σ)	B (10 ⁻⁶)	CLEO
$\pi^+\pi^-$	29^{+8+3}_{-7-4}	5.7	$9.3^{\scriptscriptstyle +2.6+1.2}_{\scriptscriptstyle -2.3-1.4}$	$4.3^{\scriptscriptstyle +1.6}_{\scriptscriptstyle -1.4}\pm 0.5$
$K^+\pi^-$	38^{+9+3}_{-8-5}	6.7	$12.5^{+3.0+1.3}_{-2.6-1.7}$	$17.2^{+2.5}_{-2.4}\pm1.2$
K^+K^-	7^{+5}_{-4} (<15)	2.1	<6.6	<1.9

David Hitlin

CP violation and the Unitarity Triangle

The Wolfenstein parametrization of the CKM matrix

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 λ and A are well-determined; ρ and η are not

The unitarity of the CKM matrix provides six constraints, the most useful of which

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

is called the unitarity triangle:

The area of the unitarity triangle, the "Jarlskog Invariant", is proportional to the strength of *CP* violation in the Standard Model:

Overconstraining the Unitarity Triangle

The sides of the unitarity triangle are determined by the magnitudes of the CKM matrix elements.

Uncertainties in theoretical models for V_{ub} , f_B , B_K , etc limit the determination of the triangle

The *CP* asymmetry in *B*⁰ decays to *CP* eigenstates measures $\sin 2\beta = -\arg \left[\frac{V_{tt}V_{tt}^*}{V_{tt}V_{tt}^*} \right]$

allowing us to overdetermine the Unitarity Triangle

Measuring *CP* violation at the $\Upsilon(4S)$

The $\Upsilon(4S)$ resonance decays to $B\overline{B}$ pairs in a coherent L=1 state

At PEP-II, with e^- energy of 9 GeV and e^+ energy of 3.1 GeV, the $\Upsilon(4S)$ is produced with $\beta\gamma=0.56$

The mean decay distance Δz between the *B* decay vertices is ~250 μ m, making it possible to ascertain the time order of the decays

If we can measure the flavor of a $B^0(\overline{B}^0)$ decay (B_{tag}) occurring at a time *t*, then at that time, the flavor of the other $\overline{B}^0(B^0)$ is known.

We then reconstruct the decay of the second B^0 at a time $\Delta t = t - t_0$ into a *CP* eigenstate:

 $f_{\pm}(\Delta t; \Gamma, \Delta m_d, \mathcal{D} \sin 2\beta) = \frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} \left[1 \pm \mathcal{D} \sin 2\beta \times \sin \Delta m_d \Delta t \right]$ where the dilution $\mathcal{D} = (1 - 2w)$ is derived from the measured mistag fraction w

-

Measuring *CP* violation at the $\Upsilon(4S)$

There are four time distributions

$$egin{aligned} f_+: & B_{_{tag}}=B, \, {\Delta t}\! >\! 0 \ & B_{_{tag}}=B, \, {\Delta t}\! <\! 0 \ & f_-: & B_{_{tag}}=\overline{B}, \, {\Delta t}\! >\! 0 \ & B_{_{tag}}=\overline{B}, \, {\Delta t}\! >\! 0 \ & B_{_{tag}}=\overline{B}, \, {\Delta t}\! <\! 0 \end{aligned}$$

Overview of the analysis

Reconstruct the *B* decays to *CP* eigenstates and tag the flavor of the other *B* decay

 Δz

B _{CP}

Select B_{tag} events using, primarily, leptons and *K*'s from *B* hadronic decays & determine *B* flavor

 B_{tag}

Select B_{CP} events ($B^0 \rightarrow J/\psi K_s^0$, etc.)

Measure the mistag fractions w_i and determine the dilutions $D_i = 1 - 2 w_i$

Measure Δz between B_{CP} and B_{tag} to determine the signed time difference Δt between the decays

Determine the resolution function for Δz

$$\mathcal{R}(\Delta t; \hat{a}) = \sum_{i=1}^{i=2} \frac{f_i}{\sigma_i \sqrt{2\pi}} \exp\left(-(\Delta t - \delta_i)^2\right) / 2\sigma_i^2$$

 $egin{aligned} \mathcal{F}_{\pm}(\Delta t\,;\,\Gamma,\,\Delta m_d,\,\mathcal{D}\sin 2eta,\hat{a}\,) &= \ f_{\pm}(\Delta t\,;\,\Gamma,\,\Delta m_d,\,\mathcal{D}\sin 2eta\,)\otimes \mathcal{R}(\Delta t\,;\,\hat{a}\,) \ &= \ \mathcal{F}_{\pm}(\Delta t\,;\,\Gamma,\,\Delta m_d,\,\mathcal{D}\sin 2eta\,)\otimes \mathcal{R}(\Delta t\,;\,\hat{a}\,) \end{aligned}$

$$\mathcal{A}_{CP}(\Delta t) \propto rac{\mathcal{F}_+(\Delta t)\,-\,\mathcal{F}_-(\Delta t)}{\mathcal{F}_+(\Delta t)\,+\,\mathcal{F}_-(\Delta t)} ~~ \propto \mathcal{D} \sin 2eta imes \sin \Delta m_d \,\Delta t$$

The resolution function for Δt

The time resolution is dominated by the z resolution of the tagging vertex

The vertex resolution function is well-described by a five-parameter sum of two gaussians

$$\mathcal{R}(\Delta t;\, \hat{a}\,) \;\;=\;\; \sum_{i=1}^{i=2}rac{f_i}{\sigma_i\sqrt{2\pi}}\exp\left(-(\Delta t-\delta_i)^2/2{\sigma_i}^2
ight)$$

In the likelihood fits, we use event-by-event time resolution errors. We introduce two scale factors S_1 and S_2 :

$$\sigma_i = \mathcal{S}_i \times \sigma_{\Delta t}$$

To account for ~1% of events with very large Δz a third gaussian with a fixed width of 8ps, is included

The parameters extracted from the fit are:

para	meter	value	
δ_{\parallel}	(p_3)	$_{0.20}$ _ 0.06	from fit
_1		1.33 ± 0.14	from fit
1_	(%)	1.6 ± 0.6	from fit
J_{1}	(%)	75	fixed
δ_2	(ps)	0	fixed
=2		2.1	fixed

Ŷ

Measurement of mistag fractions & Δm_d

21

David Hitlin

ICHEP2000

Measurement of mistag fractions & Δm_d

22

David Hitlin

ICHEP2000

Measurement of Δm_d

23

Time-dependent measurement of $w_i \& \Delta m_d$

PRELIMINARY yields Δm_d 24

The time-dependence of mixed and unmixed events is $h_{\pm}(\Delta t; \Gamma, \Delta m_{d}, \mathcal{D}) = \frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} [1 \pm \mathcal{D} \times \cos \Delta m_{d} \Delta t]$ This is convoluted with the Δz vertex resolution function $\mathcal{H}_{\pm}(\Delta t; \Gamma, \Delta m_{d}, \mathcal{D}, \delta) = h_{\pm}(\Delta t; \Gamma, \Delta m_{d}, \mathcal{D}) \otimes R(\Delta t; \delta)$ and used to form a likelihood function $\ln \mathcal{L}_{M} = \sum_{i} \left[\sum_{unmixed} \ln \mathcal{H}_{+}(t; \Gamma, \Delta m_{d}, \mathcal{D}_{i}, \delta) \right]$ $\sum_{mixed} \ln \mathcal{H}_{-}(t; \Gamma, \Delta m_{d}, \mathcal{D}_{i}, \delta) \right]$

from which we extract $w_i = (1 - D_i)/2$ and Δm_d

The period of the mixing rate $a(\Delta t) = \frac{N_{unmix}(\Delta t) - N_{mix}(\Delta t)}{N_{unmix}(\Delta t) + N_{mix}(\Delta t)}$

The amplitude yields w_i for each tagging mode

Babar ™ and © L. de Brunhoff

Results of the tag/mix likelihood fit

Parameter	hadr	onic	semile	ptonic —
	Fit Value	$Q = \epsilon (1-2w)^2$	Fit Value	$Q = \epsilon (1-2w)^2$
$\Delta m_d [\hbar \ { m ps}^{-1}]$	0.516 ± 0.031	<u>2006</u>	0.508 ± 0.020	<u>100</u>
w(Lepton)	0.116 ± 0.032	0.062	0.084 ± 0.020	0.071
w(Kaon)	0.196 ± 0.021	0.136	0.199 ± 0.016	0.133
w(NT1)	0.135 ± 0.035	0.064	0.210 ± 0.028	0.066
w(NT2)	0.314 ± 0.037	0.023	0.361 ± 0.025	0.013
scale ore, sig	1.33 ± 0.13	1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1.32 ± 0.07	3053
$\delta_{\rm core, \ sig} \ [ps]$	-0.20 ± 0.07	1000	-0.25 ± 0.04	
foutlier	0.016 ± 0.006		0.000 ± 0.002	

 $\sum_{i} Q_{i} = 0.285$

 $\sum_{i} Q_{i} = 0.283$

25

PRELIMINARY

David Hitlin

ICHEP2000

Tagged events and mistag fractions w_i

Mistag fractions (likelihood method) from the hadronic sample

Tagging Category	ε (%)	w (%)	Q (%)
Lepton	11.2 ± 0.5	$9.6\pm1.7\pm1.3$	7.3 ± 0.3
Kaon	36.7 ± 0.9	$19.7\pm1.3\pm1.1$	13.5 ± 0.3
NT1	11.7 ± 0.5	$16.7 \pm 2.2 \pm 2.0$	5.2 ± 0.2
NT2	16.6 ± 0.6	$33.1 \pm 2.1 \pm 2.1$	1.9 ± 0.1
all	76.7 ± 0.5		27.9 ± 0.5

The effective tagging efficiency is

 $Q_i = \varepsilon_i (1 - 2w_i)^2$

Tagged events by decay mode and tagging category

			J/ψ	K_S^0			ψ	(2S)I	X_S^0	C	P san	nple
Tagging Category	(K_{S}^{0})	$\rightarrow \pi^{-}$	$^{+}\pi^{-})$	(K_{S}^{0})	$\rightarrow \pi^{0}$	(π^{0})	(K_{S}^{0})	$\rightarrow \pi^{-}$	(π^{-})		(tagge	ed)
	B^0	$\overline{B}{}^{0}$	all	B^0	\overline{B}^0	all	B^0	\overline{B}^0	all	B^0	\overline{B}^0	all
Electron	1	3	4	1	0	1	1	2	3	3	5	8
Muon	1	3	4	0	0	0	2	0	2	3	3	6
Kaon	29	18	47	2	2	4	5	7	12	36	27	63
NT1	9	2	11	1	0	1	2	0	2	12	2	14
NT2	10	9	19	3	3	6	3	1	4	16	13	29
Total	50	35	85	7	5	12	13	10	23	70	50	120

26

PRELIMINARY

Systematic uncertainties in $\Delta m_d \& w_i$

Hadronic decays

Source	$\begin{bmatrix} \Delta m_d \\ [\hbar \text{ ps}^{-1}] \end{bmatrix}$	Lepton	Kaon	NT1	NT2
Δt Resolution	0.011	0.004	0.004	0.004	0.004
Background Δt	0.002	0.002	0.002	0.002	0.002
Background Resolution	0.002	0.002	0.002	0.002	0.002
Background Fractions	0.004	0.004	0.002	0.006	0.004
B^0 lifetime	0.005	0.001	0.001	0.001	0.001
z scale	0.005				
z boost	0.003				
Monte Carlo Correction	+0.013	-0.001	0.000	-0.010	-0.015
-	± 0.011	± 0.011	± 0.008	± 0.015	± 0.014
Total Systematic Error	0.018	0.013	0.010	0.017	0.015
Statistical Error	0.031	0.032	0.021	0.035	0.037
Total Error	0.036	0.035	0.023	0.039	0.040

$D^*l\nu$ decays

Source	Δm_d [$\hbar \ \mathrm{ps}^{-1}$]	Lepton	Kaon	NT1	NT2
Δt Resolution	0.012	0.005	0.009	0.012	0.005
Background Δt	0.002	0.002	0.002	0.002	0.002
Background Resolution	0.002	0.002	0.002	0.002	0.002
Background Dilutions	0.006	0.008	0.013	0.026	0.031
Background Fractions	0.006	0.009	0.011	0.017	0.032
B^+ Backgrounds	0.010	0.009	0.010	0.004	0.003
B^0 lifetime	0.006	0.001	0.001	0.001	0.001
z scale	0.005		s <u></u>	<u>-</u>	
z boost	0.003		-		
Monte Carlo Correction	+0.008	-0.010	-0.001	-0.002	-0.006
	± 0.009	$\pm \ 0.008$	$\pm \ 0.006$	$\pm \ 0.011$	\pm 0.011
Total Systematic Error	0.022	0.018	0.023	0.035	0.046
Statistical Error	0.020	0.020	0.016	0.028	0.025
Total Error	0.030	0.027	0.031	0.045	0.052

28

PRELIMINARY

David Hitlin

Blind analysis

- □ The sin2 β analysis was done blind to eliminate experimenters' bias
 - The amplitude in the asymmetry $\mathcal{A}_{CP}(\Delta t)$ was hidden by arbitrarily flipping its sign and by adding an arbitrary offset
 - The *CP* asymmetry in the Δt distribution was hidden by multiplying Δt by the sign of the tag and by adding an arbitrary offset
 - The blinded approach allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of $\sin 2\beta$ hidden
 - The result was unblinded two weeks ago

Extracting $\sin 2\beta$

The Δt distribution of the tagged *CP* eigenstate decays, which is analyzed using maximum likelihood to extract the asymmetry $\mathcal{A}_{CP}(\Delta t)$

July 31, 2000

and \overline{B}^0 tags B^0

31

David Hitlin

ICHEP2000

Statistical error

- The probability of obtaining a 1σ statistical error of
 0.37 with a sample of 120 tagged *CP* eigenstate decays has been estimated by generating a large number of toy Monte Carlo experiments with a sample of this size
 - The errors are distributed around 0.32, with a standard deviation of 0.03
 - The probability of obtaining a statistical error larger than the one we observe is 5%
- Using a set of full Monte Carlo simulated experiments with the same number of events we observe, we estimate that the probability of finding a lower value of the likelihood than our observed value is 20%

Checks

CP asymmetry of channels that should have none

Sample	Apparent CP
	asymmetry
hadronic charged	0.03 ± 0.07
hadronic neutral	-0.01 ± 0.08
$J/\psi K^+$	0.13 ± 0.14
$J/\psi K^{*0} (K^{*0} \rightarrow K^+ \pi^-)$	0.49 ± 0.26

Systematic uncertainties

Compute fractional systematic errors using the measured value of the asymmetry increased by 1σ . Different contributions are added in quadrature

Source of uncertainty	Uncertainty on $\sin 2\beta$
$ au_{_{B^0}}$	0.012
Δm_d	0.015
Δz resolution for <i>CP</i> sample	0.019
Time resolution bias for <i>CP</i> sample	0.047
Measurement of mistag fraction	0.059
Different mistag fraction for CP and	0.050
non CP samples	
Different mistag fractions for B^0 and \overline{B}^0	0.005
Background in <i>CP</i> sample	0.015
Total systematic uncertainty	0.091

Constraints on the Unitarity Triangle

The set of ellipses represents the allowed range of $(\bar{\rho}, \bar{\eta})$ based on our knowledge of the magnitudes of CKM matrix elements, for a set of typical values of model-dependent theoretical parameters:

Experimental inputs

Theoretical inputs

measurement	central value	exp. error
$ V_{cb} $.0402	.0017
$\left \frac{V_{ab}}{V_{ab}}\right $.085	.008
$\Delta m_{B_d} (ps)^{-1}$.472	.017
Δm_{B_s}	from \mathcal{A} (Moriond 2000)	σA
$ \epsilon_K $ (10 ⁻³)	2.271	.017

Theoretical est.	lower bound	higher bound
$\langle \frac{V_{ub}}{V_{cb}} \rangle$	0.070	0.100
$f_{B_d}\sqrt{B_{B_d}}$	0.185	0.255
ξ_s^2	1.14	1.46
B_K	0.72	0.98

38

PRELIMINARY

David Hitlin

ICHEP2000

Summary and Conclusions

PEP-II and *BABAR* have had an exciting and productive first year, producing more than 15 fb⁻¹ in the $\Upsilon(4S)$ region and recording more than 14 fb⁻¹ In 9 fb⁻¹ we have reconstructed and tagged 120 decays of B^0 to *CP* eigenstates

$\sin 2\beta = 0.12 \pm 0.37 (\text{stat}) \pm 0.09 (\text{stat})$	syst)
$\Delta m_d = 0.507 \pm 0.015 \pm 0.022$	di-lepton
$\Delta m_d = 0.516 \pm 0.031 \pm 0.018$	hadronic
$\Delta m_d = 0.508 \pm 0.020 \pm 0.022$	semileptonic

With 8 fb⁻¹ analyzed at the $\Upsilon(4S)$

 $\tau_{B^0} = 1.506 \pm 0.052 \text{ (stat)} \pm 0.029 \text{ (syst) ps}$ $\tau_{B^+} = 1.602 \pm 0.049 \text{ (stat)} \pm 0.035 \text{ (syst) ps}$ $\tau_{B^+} / \tau_{B^0} = 1.065 \pm 0.044 \text{ (stat)} \pm 0.021 \text{ (syst)}$

Measurements of $B(K^*\gamma)$, $B(\pi\pi)$, $B(K\pi)$, B(KK), ... A wide variety of other results have been presented in parallel sessions and contributed papers The PEP-II run has been extended to the end of October, with the goal of integrating 25 fb⁻¹ This should allow for a measurement of sin2*b* with interesting precision

