Finst

Physics Results

David \mathcal{H} it lin
Caltecf
for the $\boldsymbol{B} A \boldsymbol{B} A \boldsymbol{R}$ Collaboration

XXX ${ }^{\text {th }}$ International Conference
on Higf Energy Pfysics
Osaka
guly 31, 2000

The BABAR Collaboration

9 Countries

USA [35/276]

California Institute of Technology
UC, Irvine
UC, Los Angeles
UC, San Diego
UC, Santa Barbara
UC, Santa Cruz
U of Cincinnati
U of Colorado
Colorado State
Florida A\&M
U of Iowa
Iowa State U
LBNL
LLNL
U of Louisville
U of Maryland
U of Massachusetts, Amherst
MIT
U of Mississippi
Mount Holyoke College
Northern Kentucky U
U of Notre Dame
ORNL/Y-12
U of Oregon
U of Pennsylvania
Prairie View A\&M
Princeton
SLAC
U of South Carolina
Stanford U
U of Tennessee
U of Texas at Dallas
Vanderbilt
U of Wisconsin
Yale
Canada [4/16]
U of British Columbia
McGill U
U de Montréal
U of Victoria
China [1/6]
France [5/50]
LAPP, Annecy
LAL Orsay
LPNHE des Universités Paris 6/7
Ecole Polytechnique
CEA, DAPNIA, CE-Saclay
Germany [3/21]
U Rostock
Ruhr U Bochum
Technische U Dresden
Italy
[12/89]
INFN, Bari
INFN, Ferrara
Lab. Nazionali di Frascati dell' INFN
INFN, Genova
INFN, Milano
INFN, Napoli
INFN, Padova
INFN, Pävia
INF, Pisa
INFNN, Roma and U "La Sapienza"
INFN, Torino
INFN, Trieste
Norway [1/3]
U of Bergen
Russia [1/13]
Budker Institute, Novosibirsk
United Kingdom [10/80]
U of Birmingham
U of Bristol
Brunel University
U of Edinburgh
U of Liverpool
Imperial College
Queen Mary \& Westfield College
Royal Holloway, University of London
U of Manchester
Rutherford Appleton Laboratory
Inst. of High Energy Physics, Beijing

- PEP-II and BABAR
- Selected measurements

○ B lifetimes
O B mixing
○ $J / \psi K^{*}$ polarization

- $\pi \pi, K \pi, K K$ branching ratios
\square Measurement of $C P$-violating asymmetries in B decays to $C P$ eigenstates
\bigcirc Isolating and tagging the $C P$ sample
O Determining the Δz resolution
O Determining the mistag fractions
O Determining the $C P$-violating asymmetries
- Conclusion

PEP-II and BABAR

\square With the goal of measuring $C P$-violating asymmetries in B^{0} meson decay, construction of the PEP-II asymmetric storage ring and the associated $B_{A} B_{A R}$ detector were started in 1993 and 1994, respectively
\square PEP-II had first collisions in the Summer of 1998
$\square B A B A R$ was rolled onto the beamline in Spring 1999 and saw its first events on May 26, 1999
\square PEP-II peak luminosity is $2.28 \times 10^{33} \quad\left[3 \times 10^{33}\right.$ is design]
using 606 bunches [1658 is design], with 1286 ma e^{+}and 751 ma e^{-}
\square PEP-II efficiency has been higher than expected and BABAR efficiency has typically been $>95 \%$; the integrated "design day" luminosity of $135 \mathrm{pb}^{-1}$ (delivered) has been exceeded
\square PEP-II has delivered $16 \mathrm{fb}^{-1}$ as of July 28
O BABAR has recorded $14.8 \mathrm{fb}^{-1}$

- The results presented today are based on $\sim 10 \mathrm{fb}^{-1}$
- Much of the early data requires reprocessing to improve calibration and alignment

PEP-II delive red/BABAR recorded Cuminosity 1999+2000

BABAR talks at ICHEP2000

- Parallel Sessions

O Study of inclusive and exclusive B decays to charmonium final states with BABAR. Gerhard Raven, UCSD
O BABAR results on B decays to D^{*} and $D_{s}{ }^{(*)}$. Gloria Vuagnin, Universita' di Trieste
O Study of B lifetime and mixing with fullyreconstructed B^{0} decays with BABAR. Fernando Martinez-Vidal, Univ. Paris VI et VII
O BABAR results on B lifetime and mixing with partially-reconstructed B^{0} decays.
Christophe Yeche, Saclay
O BABAR study of the decays B->K*gamma, $B \rightarrow K l^{+} l-$ and $B \rightarrow K^{*} l^{+} l$. Colin Jessop, SLAC
O Study of charmless two-body, three-body and quasi-two-body B decays with $B A B A R$.
Theresa Champion, Univ. of Birmingham

- DIRC - The particle identification system for BABAR .
J. Schwiening, SLAC
- Plenary Session

O First Physics Results from BABAR David Hitlin, Caltech

Dilepton Mixing: Results

[PDG: $\Delta m_{d}=(0.472 \pm 0.017) \hbar \mathrm{ps}^{-1]}$

Dilepton sub-sample enriched in B^{0} with partial reconstruction of $B^{0} \rightarrow D^{*} l v$

$\pi \pi, K \pi, K K \operatorname{Branc}$ fing $\mathcal{F r a c t i o n ~ R e s u l t s ~}$

Global likelihood fit using $m_{E S}, \Delta E$, Fisher discriminant, and Cherenkov angle measured in DIRC

Mode	N_{s}	Stat. Sig. (σ)	$B\left(10^{-6}\right)$	CLEO
$\pi^{+} \pi^{-}$	29_{-7-4}^{+8+3}	5.7	$9.3_{-2.3-1.4}^{+2.6+1.2}$	$4.3_{-1.4}^{+1.6} \pm 0.5$
$K^{+} \pi^{-}$	38_{-8-5}^{+9+3}	6.7	$12.5_{-2.6-1.7}^{+3.0+1 .}$	$17.2_{-2.4}^{+2.5} \pm 1.2$
$K^{+} K^{-}$	$7_{-4}^{+-5}(<15)$	2.1	<6.6	<1.9

\square

Amplitude Analys is of $B \rightarrow J / \psi K^{*}$

Will be used for future $\sin (2 \beta)$ measurement.

CP violation and the Unitarity Triangle

The Wolfenstein parametrization of the CKM matrix

$$
\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

λ and A are well-determined; ρ and η are not
The unitarity of the CKM matrix provides six constraints, the most useful of which

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

is called the unitarity triangle:

The area of the unitarity triangle, the "Jarlskog Invariant", is proportional to the strength of $C P$ violation in the Standard Model:

Overconstraining the Unitarity Triangle

The sides of the unitarity triangle are determined by the magnitudes of the CKM matrix elements.

Uncertainties in theoretical models for $V_{u b}, f_{B}, B_{K}$, etc limit the determination of the triangle

The $C P$ asymmetry in B^{0} decays to $C P$ eigenstates measures

$$
\sin 2 \beta=-\arg \left[\frac{V_{t} V_{t t}^{*}}{V_{t} V_{t t}^{*}}\right]
$$

allowing us to overdetermine the Unitarity Triangle

Measuring $C P$ violation at the $\Upsilon(4 S)$

The $\Upsilon(4 S)$ resonance decays to $B \bar{B}$ pairs in a coherent $L=1$ state

At PEP-II, with e^{-}energy of 9 GeV and e^{+}energy of 3.1 GeV , the $\Upsilon(4 S)$ is produced with $\beta \gamma=0.56$

The mean decay distance Δz between the B decay vertices is $\sim 250 \mu \mathrm{~m}$, making it possible to ascertain the time order of the decays
If we can measure the flavor of a $B^{0}\left(\bar{B}^{0}\right)$ decay ($B_{\text {tag }}$) occurring at a time t, then at that time, the flavor of the other $\bar{B}^{0}\left(B^{0}\right)$ is known.

We then reconstruct the decay of the second B^{0} at a time $\Delta t=t-t_{0}$ into a $C P$ eigenstate:

$$
\begin{aligned}
& f_{ \pm}\left(\Delta t ; \Gamma, \Delta m_{d,} D \sin 2 \beta\right)= \\
& \quad \frac{1}{4} \Gamma \mathrm{e}^{-\Gamma|\Delta t|}\left[1 \pm D \sin 2 \beta \times \sin \Delta m_{d} \Delta t\right]
\end{aligned}
$$

where the dilution $\mathcal{D}=(1-2 w)$ is derived from the measured mistag fraction w

Me asuring CP violation at the $\Upsilon(4 S)$

There are four time distributions

$$
\begin{array}{ll}
f_{+}: & B_{\text {ag }}=B, \Delta t>0 \\
& B_{\text {tag }}=B, \Delta t<0 \\
f_{-}: & B_{\text {tag }}=\bar{B}, \Delta t>0 \\
& B_{\text {tag }}=\bar{B}, \Delta t<0
\end{array}
$$

The $C P$ asymmetry is

$$
\mathcal{A}_{c P}=\frac{f_{+}(\Delta t)-f_{-}(\Delta t)}{f_{+}(\Delta t)+f_{-}(\Delta t)}=\mathcal{D} \sin 2 \beta \times \sin \Delta m_{d} \Delta t
$$

Overview of the analyst is

Reconstruct the B decays to $C P$ eigenstates and tag the flavor of the other B decay

e^{-}

Select $B_{\text {tag }}$ events using, primarily, leptons and K^{\prime} s from B hadronic decays \& determine B flavor

Select $B_{C P}$ events
($\left.B^{0} \rightarrow J / \psi K_{s}^{0}, e t c.\right)$

Measure the mistag fractions w_{i} and determine the dilutions $\mathcal{D}_{\mathrm{i}}=1-2 w_{\mathrm{i}}$

Measure Δz between $B_{C P}$ and $B_{\text {tag }}$ to determine the signed time difference Δt between the decays

Determine the resolution function for $\Delta \mathrm{z}$

$$
\mathcal{R}(\Delta t ; \hat{a})=\sum_{i=1}^{i=2} \frac{f_{i}}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\left(\Delta t-\delta_{i}\right)^{2}\right) / 2 \sigma_{i}^{2}
$$

$\mathcal{F}_{ \pm}\left(\Delta t ; \Gamma, \Delta m_{d}, D \sin 2 \beta, \hat{a}\right)=$

$$
f_{ \pm}\left(\Delta t ; \Gamma, \Delta r_{d}, D \sin 2 \beta\right) \otimes \mathcal{R}(\Delta t ; \hat{\sigma})
$$

$\mathcal{A}_{C P}(\Delta t) \propto \frac{\mathcal{F}_{+}(\Delta t)-\mathcal{F}_{-}(\Delta t)}{\mathcal{F}_{+}(\Delta t)+\mathcal{F}_{-}(\Delta t)} \propto \mathcal{D} \sin 2 \beta \times \sin \Delta m_{d} \Delta t$
\mathcal{A} tagged $B^{0} \rightarrow J / \psi K_{s}^{0}$ event

The $B_{C P}$ sample

$$
\begin{array}{r}
J / \psi K_{s}^{0}\left(K_{s}^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
124 \pm 12 \text { events } \\
\text { purity } 96 \%
\end{array}
$$

$$
\begin{array}{r}
J / \psi K_{s}^{0}\left(K_{s}^{0} \rightarrow \pi^{0} \pi^{0}\right) \\
18 \pm 4 \text { events } \\
\text { purity } 91 \%
\end{array}
$$

The resolution function for Δt

The time resolution is dominated by the z resolution of the tagging vertex

The vertex resolution function is well-described by a five-parameter sum of two gaussians

$$
\mathcal{R}(\Delta t ; \tilde{\sigma})=\sum_{i=1}^{i=2} \frac{f_{i}}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\left(\Delta t-\delta_{i}\right)^{2} / 2 \sigma_{i}^{2}\right)
$$

In the likelihood fits, we use event-by-event time resolution errors. We introduce two scale factors \mathcal{S}_{1} and \mathcal{S}_{2} :

$$
\sigma_{i}=\mathcal{S}_{i} \times \sigma_{\Delta t}
$$

To account for $\sim 1 \%$ of events with very large Δz a third gaussian with a fixed width of 8 ps , is included

The parameters extracted from the fit are:

Pramamer		Yidura	
高	[19]	-020_0.07	from fit
- 1		1.38-0.14	fromat fit
$I_{=}$	(\%)	1.6_0.6	from fitit
f_{1}	(\%)	75	filixal
揰	[1P4]	\square	filued
- 3		2.1	fixas

Particle I D and mis - I D

Me asurement of mistag fractions \& Δm_{d}

\square Mistag fractions and Δm_{d} are directly measured
O We use a large sample of events in which one B^{0} candidate, called $B_{r e c}$, is fully reconstructed in a flavor eigenstate mode

Hadronic sample: 2227 events

$$
D^{*-} \pi^{+}, D^{*-} \rho^{+}, D^{*-} a_{1}^{+}, D^{-} \pi^{+}, D^{-} \rho^{+}, D^{-} a_{1}^{+}
$$

Semileptonic events: 7517 events $D^{*-} \ell^{+} \nu_{\text {, }}$
O We apply flavor-tagging algorithms to the rest of the event, which constitutes the potential $B_{\text {tag }}$
O Tagging categories:
$\left.\begin{array}{l}\text { Electron } \\ \text { Muon }\end{array}\right\}$ Lepton
Kaon
$\left.\begin{array}{l}\text { NT1 } \\ \text { NT2 }\end{array}\right\}$ Neural network
O We classify tagged events as mixed or unmixed, depending on whether the $B_{\text {tag }}$ is tagged with the same or the opposite flavor as the $B_{\text {rec }}$
O The time-dependent rate of mixing, which best exploits information at small values of $\Delta t=t_{\text {rec }}-t_{\text {tag }}$, is used to extract w_{i} and Δm_{d}
O The time-integrated rate of mixed events in each tagging category:

$$
\chi_{i}=\chi_{d}+\left(1-2 \chi_{d}\right) w_{i}
$$

$$
\text { where } \chi_{d}=\frac{x_{d}^{2}}{2\left(1+x_{d}^{2}\right)}, \quad x_{d}=\frac{\Delta m_{d}}{\Gamma}
$$

is used as a cross check

Me asurement of mistag fractions \& Δm_{d}

Hadronic sample

Sample	Final State	Yield	Purity (\%)
Hadronic	$D^{*} \pi^{+}$	622 ± 27	90
(neutral)	$D^{*} \rho^{+}$	419 ± 25	84
	$D^{*}-a_{1}+$	239 ± 19	79
	$D^{-} \pi^{+}$	630 ± 26	90
	$D^{-} \rho^{+}$	315 ± 20	84
	$D^{*} \pi^{+}$	225 ± 20	74
	total	2438 ± 57	85
	$\bar{D}^{\circ} \pi^{+}$	1755 ± 47	88
Hadronic	$\bar{D}^{*} \pi^{+}$	543 ± 27	89
(charged)	\bar{D}^{*}	2293 ± 54	88
	total	2	

Me asurement of mistag fractions or Δm_{d}

Sample	Final State	Yield	Purity(\%)
Semileptonic	$D^{*} l \nu$	7517 ± 104	84

Me as urement of Δm_{d}

Time-dependent measurement of $w_{i} \& \Delta m_{d}$

The time-dependence of mixed and unmixed events is

$$
h_{ \pm}\left(\Delta t ; \Gamma, \Delta m_{d}, \mathcal{D}\right)=\frac{1}{4} \Gamma \mathrm{e}^{-\Gamma|\Delta|}\left[1 \pm \mathcal{D} \times \cos \Delta m_{d} \Delta t\right]
$$

This is convoluted with the Δz vertex resolution function $\mathcal{H}_{ \pm}\left(\Delta t ; \Gamma, \Delta m_{d}, \mathcal{D}, \delta\right)=h_{ \pm}\left(\Delta t ; \Gamma, \Delta m_{d}, \mathcal{D}\right) \otimes R(\Delta t ; \delta)$
and used to form a likelihood function

$$
\begin{aligned}
& \ln \mathcal{L}_{M}=\sum_{i}\left[\sum_{\text {uminied }} \ln \mathcal{H}_{+}\left(t ; \Gamma, \Delta m_{d}, \mathcal{D}_{i}, \delta\right)\right. \\
&\left.\sum_{\text {mised }} \ln \mathcal{H}_{-}\left(t ; \Gamma, \Delta m_{d}, \mathcal{D}_{i}, \delta\right)\right]
\end{aligned}
$$

from which we extract $w_{i}=\left(1-\mathcal{D}_{i}\right) / 2$ and Δm_{d}
The period of the mixing rate $a(\Delta t)=\frac{N_{\text {ummix }}(\Delta t)-N_{\text {mix }}(\Delta t)}{N_{\text {umixix }}(\Delta t)+N_{\text {mix }}(\Delta t)}$
yields Δm_{d}
The amplitude yields w_{i} for each tagging mode

Results of the tag/mix likelinood fit

Parameter	fradronic		semileptonic	
	Fit Value $\quad 0=\mathrm{c}(1-2 w)^{3}$		Fit Valac $\theta=c(1-2 w)^{2}$	
$\Delta m_{d}\left[\hbar^{\mathrm{F}^{-1}}{ }^{-1}\right]$	0.516 ± 0.031	-	0.508 ± 0.020	-
v(Lepton)	0.116 ± 0.032	0.082	0.084 ± 0.020	0.071
$w($ Kaon $)$	0.190 ± 0.021	0.136	0.199 ± 0.016	0.133
$w(\mathrm{NT} 1)$	0.135 ± 0.035	0.064	0.210 ± 0.028	0.066
$w(\mathrm{NT2})$	0.314 ± 0.037	0.023	0.331 ± 0.025	0.013
scalc ${ }_{\text {corere }}$ kig	1.33 ± 0.13	-	1.32 ± 0.07	-
$\delta_{\text {core, ing }}$ [$\mathrm{P}^{\mathbf{6}}$]	-0.20 ± 0.07	-	-0.25 ± 0.04	-
$f_{\text {oullier }}$	0.016 ± 0.006	-	0.000 ± 0.002	-
	$\sum_{i} Q_{i}=0.285$		$\sum_{i} Q_{i}=0.283$	

Tagged events and mistag fractions w_{i}

Mistag fractions (likelihood method) from the fiadronic sample

Tagging Category	$\varepsilon(\%)$	$w(\%)$	$Q(\%)$
Lepton	11.2 ± 0.5	$9.6 \pm 1.7 \pm 1.3$	7.3 ± 0.3
Kaon	36.7 ± 0.9	$19.7 \pm 1.3 \pm 1.1$	13.5 ± 0.3
NT1	11.7 ± 0.5	$16.7 \pm 2.2 \pm 2.0$	5.2 ± 0.2
NT2	16.6 ± 0.6	$33.1 \pm 2.1 \pm 2.1$	1.9 ± 0.1
all	76.7 ± 0.5		27.9 ± 0.5

The effective tagging efficiency is

$$
Q_{i}=\varepsilon_{i}\left(1-2 w_{i}\right)^{2}
$$

Tagged events by decay mode and tagging category

Δm_{d} from the tag/mix likelifood fit

Combined result

$$
\Delta m_{d}=0.512 \pm 0.017(\mathrm{stat}) \pm 0.022(\mathrm{syst}) \hbar \mathrm{ps}^{-1}
$$

[PDG: $\Delta m_{d}=0.472 \pm 0.017{ }_{\mathrm{h} \mathrm{ps}^{-1}}$]

Systematic uncertainties in $\Delta m_{d} \& \boldsymbol{w}_{\boldsymbol{i}}$

$\mathcal{H a d r o n i c}$ decays

Source	Δm_{d} $\left[\hbar \mathrm{ps}^{-1}\right]$	Lepton	Kaon	NT1	NT2
Δt Resolution	0.011	0.004	0.004	0.004	0.004
Background Δt	0.002	0.002	0.002	0.002	0.002
Background Resolution	0.002	0.002	0.002	0.002	0.002
Background Fractions	0.004	0.004	0.002	0.006	0.004
B^{0} lifetime	0.005	0.001	0.001	0.001	0.001
z scale	0.005	-	-	-	-
z boost	0.003	-	-	-	-
Monte Carlo Correction	+0.013	-0.001	0.000	-0.010	-0.015
	± 0.011	± 0.011	± 0.008	± 0.015	± 0.014
Total Systematic Error	0.018	0.013	0.010	0.017	0.015
Statistical Error	0.031	0.032	0.021	0.035	0.037
Total Error	0.036	0.035	0.023	0.039	0.040

D*ly decays

Source	Δm_{d} $\left[\hbar \mathrm{ps}^{-1}\right]$	Lepton	Kaon	NT1	NT2
Δt Resolution	0.012	0.005	0.009	0.012	0.005
Background Δt	0.002	0.002	0.002	0.002	0.002
Background Resolution	0.002	0.002	0.002	0.002	0.002
Background Dilutions	0.006	0.008	0.013	0.026	0.031
Background Fractions	0.006	0.009	0.011	0.017	0.032
B^{+}Backgrounds	0.010	0.009	0.010	0.004	0.003
B^{0} lifetime	0.006	0.001	0.001	0.001	0.001
z scale	0.005	-	-	-	-
z boost	0.003	-	-	-	-
Monte Carlo Correction	+0.008	-0.010	-0.001	-0.002	-0.006
	± 0.009	± 0.008	± 0.006	± 0.011	± 0.011
Total Systematic Error	0.022	0.018	0.023	0.035	0.046
Statistical Error	0.020	0.020	0.016	0.028	0.025
Total Error	0.030	0.027	0.031	0.045	0.052

B^{0} and $B^{ \pm}$life times using fully reconstructed fiadronic decays

Uses the same vertex fitting technique as the $C P$ analysis

$$
\tau_{B^{0}}=1.506 \pm 0.052(\text { stat }) \pm 0.029(\text { syst }) \mathrm{ps}
$$

[PDG: $1.548 \pm 0.032]$

$$
\tau_{B^{+}}=1.602 \pm 0.049(\text { stat }) \pm 0.035(\text { syst }) \mathrm{ps}
$$

[PDG: $1.653 \pm 0.028]$

$$
\tau_{B^{+}} / \tau_{B^{0}}=1.065 \pm 0.044(\text { stat }) \pm 0.021 \text { (syst) }
$$

[PDG: $1.062 \pm 0.029]$

Blind analys is

\square The $\sin 2 \beta$ analysis was done blind to eliminate experimenters' bias
O The amplitude in the asymmetry $\mathcal{A}_{C P}(\Delta t)$ was hidden by arbitrarily flipping its sign and by adding an arbitrary offset
O The $C P$ asymmetry in the Δt distribution was hidden by multiplying Δt by the sign of the tag and by adding an arbitrary offset
O The blinded aproach allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of $\sin 2 \beta$ hidden
O The result was unblinded two weeks ago

Extracting $\sin 2 \beta$

- The Δt distribution of the tagged $C P$ eigenstate decays, which is analyzed using maximum likelihood to extract the asymmetry $\mathcal{A}_{C P}(\Delta t)$

Extracting $\sin 2 \beta$

Results of the likelfood fit to the full sample and various subsamples

```
sin}2\beta=0.12\pm0.37\mathrm{ (stat) }\pm0.09\mathrm{ (syst)
```


normpl	
［F］manql	412 5 H？
cther［ ${ }^{[1]}$ mentit	
LPton	1．W ± 1 II
Kann	［L 14土［1．4
HT1	－
122	－1］リ4i

Statistical error

- The probability of obtaining a 1σ statistical error of 0.37 with a sample of 120 tagged $C P$ eigenstate decays has been estimated by generating a large number of toy Monte Carlo experiments with a sample of this size
O The errors are distributed around 0.32 , with a standard deviation of 0.03
O The probability of obtaining a statistical error larger than the one we observe is 5%
\square Using a set of full Monte Carlo simulated experiments with the same number of events we observe, we estimate that the probability of finding a lower value of the likelihood than our observed value is 20%

Checks

$C P$ asymmetry of channels that should have none

Sample	Apparent $\boldsymbol{C P}$ asymmetry
hadronic charged	0.03 ± 0.07
hadronic neutral	-0.01 ± 0.08
$J / \psi K^{+}$	0.13 ± 0.14
$J / \psi K^{* 0}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$	0.49 ± 0.26

Fit including direct $C P$ violation

$$
\begin{aligned}
& \mathcal{A}_{c P}=\frac{\mathcal{D} \sin 2 \beta \sin \Delta m_{d} \Delta t+\left(1-\mid \lambda_{c P}{ }^{2}\right) \cos \Delta m_{d} \Delta t}{\left(1+\left|\lambda_{C P}\right|^{2}\right)} \\
& \sin 2 \beta=0.12 \pm 0.37 \\
& \frac{1-\left|\lambda_{c P}\right|^{2}}{1+\left|\lambda_{C P}\right|^{2}}=0.26 \pm 0.19
\end{aligned}
$$

Systematic uncertainties

Compute fractional systematic errors using the measured value of the asymmetry increased by 1σ. Different contributions are added in quadrature

Source of uncertainty	Uncertainty on $\sin 2 \beta$
$\tau_{B^{0}}$	0.012
Δm_{d}	0.015
Δz resolution for $C P$ sample	0.019
Time resolution bias for $C P$ sample	0.047
Measurement of mistag fraction	0.059
Different mistag fraction for $C P$ and non $C P$ samples	0.050
Different mistag fractions for B^{0} and \bar{B}^{0}	0.005
Background in $C P$ sample	0.015
Total systematic uncertainty	0.091

Constraints on the Unitarity Triangle

The set of ellipses represents the allowed range of $(\bar{\rho}, \bar{\eta})$ based on our knowledge of the magnitudes of CKM matrix elements, for a set of typical values of model-dependent theoretical parameters:

Experimental inputs		
measurement	central value	exp. error
$\left\|V_{\text {cb }}\right\|$. 0402	. 0017
$\left\|\frac{V_{\text {co }}}{V_{a b}}\right\|$. 085	. 008
$\Delta m_{B_{d}}(p s)^{-1}$. 472	. 017
$\Delta m_{B_{*}}$	from $\boldsymbol{\mathcal { A }}$ (Moriond 2000)	$\sigma_{\text {A }}$
$\left\|\epsilon_{K}\right\|\left(10^{-3}\right)$	2.271	. 017

Theoretical inputs

Theoretical est.	lower bound	higher bound
$\left\langle\frac{V_{\text {ut }}}{V}\right\rangle$	0.070	0.100
$f_{B_{d}} \sqrt{B_{B_{d}}}$	0.185	0.255
ξ_{d}^{2}	1.14	1.46
B_{K}	0.72	0.98

[^0]
Summary and Conclusions

PEP-II and BABAR have had an exciting and productive first year, producing more than $15 \mathrm{fb}^{-1}$ in the $\Upsilon(4 S)$ region and recording more than $14 \mathrm{fb}^{-1}$ In $9 \mathrm{fb}^{-1}$ we have reconstructed and tagged 120 decays of B^{0} to $C P$ eigenstates

$$
\begin{array}{ll}
\sin 2 \beta=0.12 \pm 0.37 \text { (stat) } \pm 0.09 \text { (syst) } \\
\Delta m_{d}=0.507 \pm 0.015 \pm 0.022 & \text { di-lepton } \\
\Delta m_{d}=0.516 \pm 0.031 \pm 0.018 & \text { hadronic } \\
\Delta m_{d}=0.508 \pm 0.020 \pm 0.022 & \text { semileptonic }
\end{array}
$$

With $8 \mathrm{fb}^{-1}$ analyzed at the $\Upsilon(4 S)$

$$
\begin{gathered}
\tau_{B^{0}}=1.506 \pm 0.052 \text { (stat) } \pm 0.029 \text { (syst) } \mathrm{ps} \\
\tau_{B^{+}}=1.602 \pm 0.049 \text { (stat) } \pm 0.035 \text { (syst) ps } \\
\tau_{B^{+}} / \tau_{B^{0}}=1.065 \pm 0.044 \text { (stat) } \pm 0.021 \text { (syst) }
\end{gathered}
$$

Measurements of $B\left(K^{*} \gamma\right), B(\pi \pi), B(K \pi), B(K K), \ldots$ A wide variety of other results have been presented in parallel sessions and contributed papers The PEP-II run has been extended to the end of October, with the goal of integrating $25 \mathrm{fb}^{-1}$

This should allow for a measurement of $\sin 2 b$ with interesting precision

[^0]: $\sin 2 \beta=0.12 \pm 0.37 \pm 0.09$ is NOT included in the fits

