Flavour Dynamics -Central Mysteries of the Standard Model

Ikaros Bigi

Notre Dame du Lac

3 mysteries

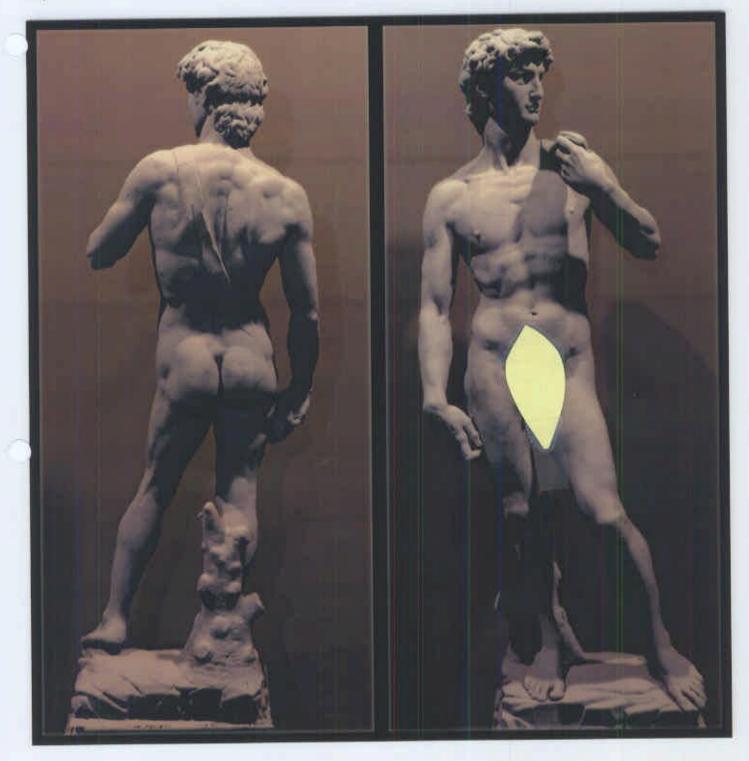
- o ∃ family structure!?
 - quarks ↔ leptons
- o family replication!?
 why 3 families? Is 3 fundamental?
- pattern of masses & mass related
 quantities ← CKM
 - appears highly nonaccidental
 - o neutrinos massless?

2 strategies for obtaining answers Strategy (A)

- have enough data!
- solve remaining fundamental
 challenge: bring gravity into
 quantum world!
 - ⇒ family structure as side effect

"Le Penseur"

Strategy (B)


nature might have a few more surprises up her sleeves -- need more hints from nature!

"David"

this talk: Strategy (B)

New Landmarks

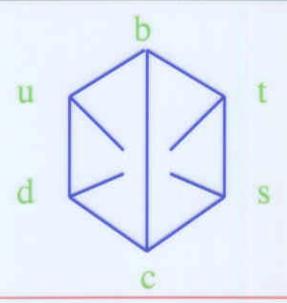
- Direct CR established in K decays!
- On the brink of observing SP in

 B decays -- a first outside $\Delta S \neq 0$!
- New Physics in D⁰ D⁰ and CP

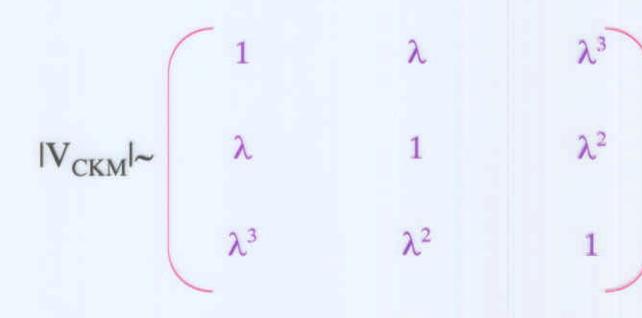
on the theory side:

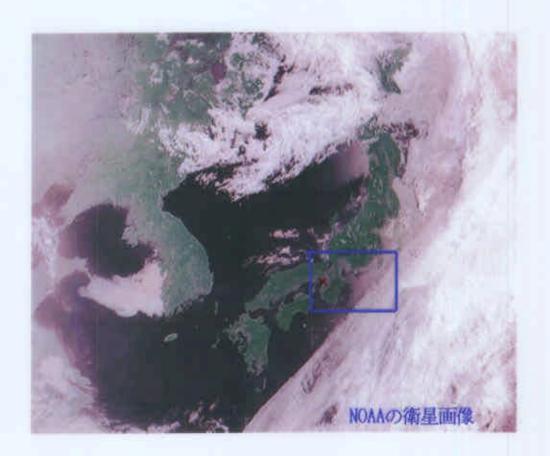
- learning lessons of humility
- increasing sophistication of theoretical technologies
- pushing back new frontiers

New Challenges (to Theory)


- \Rightarrow regain theoretical control over $\epsilon'/\epsilon!$
- develop reliable quantitative predictions for CP asymmetries in B decays!
- refine those predictions into precise ones!
- establish theoretical control over
 D⁰ D⁰ oscillations and CP violation!
- develop comprehensive strategies to distinguish between different New Physics scenarios!

topics


- Charged Current Couplings of Quarks
 - the unreasonable success of CKM
 - extracting CKM parameters
- o Nonleptonic Decays
 - □ H_b & H_c lifetimes as validation studies
 - □ exclusive NL decays B → M₁ M₂
 - quark-hadron duality
- o CP Violation
 - $\Box \epsilon'/\epsilon$
 - $\triangle B \neq 0$
- o The Search for New Physics
- comments on theoretical uncertainties
 - a future CKM trigonometry
 - "exotica": $K_{\mu 3}$, EDM's, $\Delta C \neq 0$
 - "Textures"



I. The Charged Current Couplings of Quarks

- σ $\tau(b) \sim 10^{-12} \text{ sec} >> 10^{-14} \text{ sec}$
- o $|b \Rightarrow c|^2 >> |b \Rightarrow u|^2$

I.1 The unreasonable success of the CKM description

could always be "accommodated" --whether

 $|V(td)| \sim \lambda^2$, $|V(ts)| \sim \lambda$ and $m_t \sim 40 \text{ GeV}$

or

 $|V(td)| \sim \lambda^3$, $|V(ts)| \sim \lambda^2$ and $m_t \sim 180 \text{ GeV}$

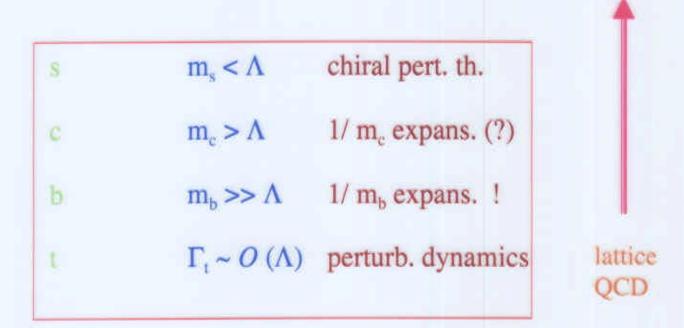
yet

 $|V(td)| \sim \lambda^2$, $|V(ts)| \sim \lambda$ and $m_t \sim 180 \text{ GeV}$

or

 $|V(td)| \sim \lambda^3$, $|V(ts)| \sim \lambda^2$ and $m_t \sim 40$ GeV would have been a clear inconsistency!

I.2 The (important) Details


PDG 2000:

without imposing 3 family unitarity

with imposing 3 family unitarity

| IV(ud)| | IV(us)| | IV(ub)| | 0.9750±0.0008 | 0.223±0.004 | 0.003±0.002 | IV(cd)| | IV(cs)| | IV(cb)| | 0.222±0.003 | 0.9742±0.0008 | 0.040±0.003 | IV(td)| | IV(ts)| | IV(tb)| | 0.009±0.005 | 0.039±0.004 | 0.9992±0.0002

I.2.a. Theoretical Technologies for QCD

- o 1/m_O expansions
- o lattice QCD (⇒ Kenway's lecture)
- quark models (properly used)
 ground prepared for fruitful feedback
- both defined in Euclidean space
- both "mature"
- similar as well as different expansion parameters
- → lattice QCD provides input to 1/m_o expansion

I.2.b. Extracting CKM Parameters

main tool (so far): 1/mo expansions

conceptual convergence

e.g.:
$$\Gamma(B \to l \nu X)$$
 yet $\Gamma(B \to c\bar{u}d\bar{q})$ $\Gamma(B \to c\bar{c}s\bar{q})$ accuracy $\sim o.k.$

numerical convergence in basic quantities

$$4.56 \pm 0.06 \text{ GeV}$$
 MeYe (kinetic) m_b(1 GeV)= $^{-}4.57 \pm 0.04 \text{ GeV}$ Ho
$$4.59 \pm 0.06 \text{ GeV}$$
 Be Si

error estimates quite possibly overly optimisite, but not foolish

11

Caveat:

all three analyses based on Y(4S) region; i.e. not truly independent!

essential quality/selfconsistency check

shape of spectra in SL B decays

depend on
$$m_b$$
, m_b - m_c , $\mu_{\pi}^2 [\lambda_1]$

$$\Lambda \mu \equiv M(H_b) - m_b \mu \text{ as } m_b \rightarrow \infty$$

$$\mu_{\pi}^{2} \equiv \left\langle B \middle| \bar{b}(iD)^{2} b \middle| B \right\rangle / 2M_{B}$$

$$B \rightarrow 1 \nu X$$

Fa Lu Sa

jury still out ...

V(cb)

2 methods with best theoretical justification

> 'exclusive'

$$B \Rightarrow 1 \nu D^* \text{ at zero recoil}$$

$$|V(cb)| F_{D^*}(0)|$$

$$= 1 + O(1/m_c^2) + O(\alpha_s)$$

$$\text{the challenge!}$$

$$0.89 \pm 0.08 \quad \text{Uraltsev et al.}$$

$$F_{D^*}(0) = \begin{cases} 0.913 \pm 0.042 \quad \text{BaBar Book} \\ 0.935 \pm 0.03 \quad \text{prelim. lattice:} \\ (0.935 \pm 0.022 + 0.008 \\ \pm 0.008 \pm 0.020 \end{cases}$$

$$\text{will use:} \quad F_{D^*}(0) = 0.90 \pm 0.05$$

data:

CLEO for ICHEP2000

$$|V(cb) F_{D*}(0)| = (42.4\pm1.8|_{stat}\pm1.9|_{syst})\times10^{-3}$$

$$|V(cb)| = (47.1\pm2.0 |_{stat} \pm 2.1 |_{syst} \pm 2.1 |_{th}) \times 10^{-3}$$

LEP for ICHEP2000:

$$|V(cb) F_{D*}(0)| = (34.9 \pm 0.7 I_{stat} \pm 1.6 I_{syst}) \times 10^{-3}$$

$$|V(cb)| = (38.8\pm0.8 |_{stat} \pm 1.8 |_{syst} \pm 1.7 |_{th}) \times 10^{-3}$$

$$\rightarrow$$
 $\Delta |V(cb) F_{D*}(0)| = 7.5 \times 10^{-3}$

keeps me sitting on the fence concerning the observation of B_s oscill.

Future:

very hard to reduce theoretical uncertainty!

inclusive' -- total SL B width

$$\Gamma_{SL}(B) \propto m_b^5 (1+O(1/m_b^2) + O(\alpha_S))$$

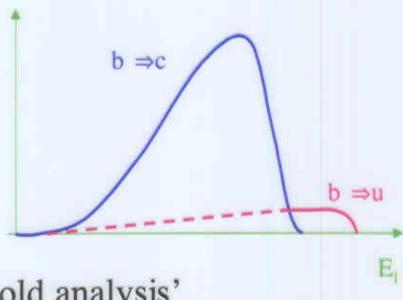
the challenge!

[actually
$$\Gamma_{SL}(B) \propto (m_b - m_c)^3 m_b^2$$
]

lots of new CLEO data on tape -- but not analyzed!

new LEP data:

$$V(cb)|_{incl} = (40.76 \pm 0.41|_{exp} \pm 2.0|_{th}) \times 10^{-3}$$


$$|V(cb)| = 0.0411 \sqrt{\frac{1.55}{0.105}} \Gamma(b \rightarrow l \nu X_c) \times \left(1 - 0.024 \left(\frac{\mu_{\pi}^2 - 0.5}{0.2}\right)\right) \times Bi Sh Ur Va$$

$$\left(1 \pm 0.030|_{pert} \pm 0.020|_{m_b} \pm 0.024|_{1/m_b^3}\right)$$

Future: not unrealistic to reduce theoretical uncertainty down to ~2%!

V(ub)

- first methods
 - energy endpoint spectrum (i.e., kinematical discrimination)

'old analysis'

$$V(ub)|_{endp} = (3.2 \pm 0.8) \times 10^{-3}$$

- strong model dependance so far
- yet can be reduced considerably!
- o endpoint different for Bd and B+1

exclusive semileptonic modes

$$B \Rightarrow l \nu \pi, l \nu \rho$$

$$V(ub)|_{excl} =$$

$$(3.25\pm0.14|_{\text{stat}}\pm0.27|_{\text{syst}}\pm0.55|_{\text{th}})\times10^{-3}$$

- strong model dependance so far
- input from QCD sum rules
- waiting for lattice QCD

new method on the scene:

determine
$$\Gamma_{SL}(B \rightarrow l\nu X_u)$$

$$V(ub)|_{\Gamma_{SL}} = (4.04 \pm 0.44|_{stat} \pm 0.46|_{b \to c, syst} \pm 0.25|_{b \to u, syst} \pm 0.02|_{\tau_b} \pm 0.19|_{HQE}) \times 10^{-3}$$

- good theoretical control BiShUrVa
- experimentally very challenging
- 6 future method

measure the hadronic recoil mass spectrum

$$\frac{\mathrm{d}}{\mathrm{d}\,\mathrm{M}_X}\,\Gamma\,(B\,\to\,l\,\nu\,X)$$

Ba Ph Ki

QCD compatible descript:

DiUr,BiUrDi,FaLiWi

mild dependance on cut-off M_{X,max} for

$$M_{X,max} \sim 1.6 \text{ GeV}$$

- theoretical refinements under construction to improve experimental feasibility

 Ba Li Lu
- large statistics required
- ⇒ 10% uncertainty not unrealistic

resume on V(ub)

 considerable improvements in the near future quantitatively and qualitatively

more reliable error estimates

- an uncertainty not exceeding 10 % appears achievable through dedicated efforts
- one can entertain hopes (dreams?)
 beyond that in the long run

V(td)

B_d vs. B_s oscillations

$$x_d/x_s \approx |V(td)/V(ts)|^2 \times |Bf(B_d)/Bf(B_s)|^2$$

- could be sensitive to New Physics!
- \circ K⁺ \Rightarrow π ⁺ $\nu \nu$

its width is dominated by virtual top quark contribution

$$\Gamma(K^+ \Rightarrow \pi^+ \nu \nu) \Rightarrow |V(td)V(ts)|^2$$

exclusive radiative decays

$$\Gamma(B \Rightarrow \rho \gamma) / \Gamma(B \Rightarrow K^* \gamma) \sim |V(td)/V(ts)|^2$$

- could be sensitive to New Physics
- could be quite sensitive to long distance dynamics

II. Nonleptonic Heavy Flavour Decays

II.1 Quark-hadron duality

systematic theoretical uncertainties? quark-hadron duality!

 $< d\sigma(quark\&gluon d.o.f.)> = < d\sigma(hadr.d.o.f)>$

duality

21

general expectations:

- duality cannot be exact
- o limitations to duality will depend on the process
- duality violations larger in NL than SL decays

beyond?

lots of folklore

fruitful concepts -- but no theory

3 phases of QCD

- perturb. effects
- nonpert. effects -- in heavy flavour decays
- 1 limitations to duality a new frontier!

different realizations of duality

- global duality
- duality
- local duality

averaging/"smearing"

physical origins of limitations to duality

 exact positions of hadronic thresholds implementation through `oscillating terms'

Euclidean $\exp\{-m_Q/\Lambda\}$ \longrightarrow Minkowskian $\sin(m_Q/\Lambda)$

- -- sensitivity to 'distant cuts'
- -- validity of $1/m_c$ expans. in B $\rightarrow 1 \nu D^*$

theoretical tools

- OPE insensitive to duality violations (yet indirect qualitative lessons)
- exactly solvable model field theories
 e.g., 't Hooft model

QCD in 1+1 dimensions, $N_C \rightarrow \infty$ Le Gr numerical analysis suggested significant or even large violations of duality

Bi Sh Ur Va analytical analysis

truly tiny violations only!

Le Ur duality obeyed even in spectra etc.

other tools? redundant determinations! determine m_b , m_b - m_c , μ_{π}^2 in different ways

- o extract V(cb), V(ub), V(td)/V(ts) from B_s

 decays 'hic Rhodus, hic salta!'

 more telling than B_d vs. B_u

 V(cb)
 - $ightharpoonup \Gamma_{SL}(B_s)$
 - lepton spectra/moments in B_s decays
 - \rightarrow B_s ⇒ 1 v D_s* at zero recoil V(ub)
 - hadronic recoil mass spectrum in

$$B_s \Rightarrow l \nu X$$

exclusive semileptonic modes

$$B_s \Rightarrow 1 \nu K, B_s \Rightarrow 1 \nu K*$$

II.2 Weak lifetimes as validation studies

Charm

$$\tau\left(D^{+}\right) > \tau\left(D^{0}\right) \sim \tau\left(D_{s}^{+}\right) \geq \tau\left(\Xi_{c}^{+}\right) > \tau\left(\Lambda_{c}^{+}\right) > \tau\left(\Xi_{c}^{0}\right) > \tau\left(\Omega_{c}^{+}\right)$$

	1/mc expect.	comments	data
τ(D+)/τ(D ⁰)	~ 2 + 10-20% from WA	PI in t(D*) consistent treatment of momenta in "wavefunction"	2.55± 0.034 updated BELLE 2.51±0.06±0.04
τ(D _s)/τ(D ⁰)	1.0 - 1.07 0.9 - 1.3 B&U 1.08 ± 0.04 Cheng & Yang	without WA with WA " " use QCD SR for ME	"old" 1.125± 0.042 "new WA" 1.180± 0.017 BELLE 1.15±0.04±0.02
$\tau(\Lambda_c^+)/\tau(D^0)$	~ 0.5	Quark model matrix elem.	0.489± 0.008 updated
$\tau(\Xi_c^+)/\tau(\Lambda_c)$	~ 1.3	66	1.75± 0.36
τ(Ξ _c ⁺)/τ(Ξ _c ⁰)	~ 2.8	- 44	3.57± 0.91
$\tau(\Xi_c^+)/\tau(\Omega_c)$	~ 4	44	3.9± 1.7
$2y=$ $\Delta\Gamma/\Gamma _{D^0}$	≤ O(1%)	test bed for duality	-12<2y<0.6%

26

- o observed pattern reproduced/predict, semiquantitatively!
- o PI main effect for mesons
 - "old" data on $\tau(D_s)/\tau(D^0)$
 - ⇒ WA not leading, possibly irrelevant
 - "new" data
 - ⇒ WA -- while not leading -still significant in D decays!
- description for baryonic widths helped by generous errors

$$\delta \tau(\Xi_c) \backslash \tau(\Lambda_c) \sim 10 - 15 \%$$

highly informative!

 semileptonic BR's for baryons do not reflect lifetime ratios!

$$\begin{split} \Gamma_{\rm SL}({\rm D}) & \neq \Gamma_{\rm SL}(\Lambda_{\rm e}) \neq \Gamma_{\rm SL}(\Xi_{\rm e}) \neq \Gamma_{\rm SL}(\Omega_{\rm e}) \\ & = {\rm constructive~PI~in~SL~\Xi_{\rm e}~and~\Omega_{\rm e}~decays} \longrightarrow \\ & = {\rm BR_{\rm SL}}(\Xi_{\rm e}^{~0}) ~\sim {\rm BR_{\rm SL}}(\Lambda_{\rm e}) ~~{\rm vs.}~~\tau(\Xi_{\rm e}^{~0}) \sim 0.5 \cdot \tau(\Lambda_{\rm e}) \\ & = {\rm BR_{\rm SL}}(\Xi_{\rm e}^{+}) \sim 2.5 \cdot {\rm BR_{\rm SL}}(\Lambda_{\rm e}) ~{\rm vs.}~~\tau(\Xi_{\rm e}^{+}) \sim 1.3 \cdot \tau(\Lambda_{\rm e}) \\ & = {\rm BR_{\rm SL}}(\Omega_{\rm e}) < 15~\% \end{split}$$

beauty

	1/m _b predict.	comment	data
$\tau(B^+)/\tau(B_d)$	1 + + 0.05(f _B /200 MeV) ³	PI in t(B*) factorization at low scale (1 GeV)	1.070 ± 0.020 updated ICHEP
$\tau(B_s)/\tau(B_d)$ $\Delta\Gamma(B_s)/\Gamma(B_s)$	$1 \pm O(0.01)$ $0.18(\mathbf{f_{B}/200MeV})^{2}$	Voloshin et al., Sov.J.Nucl. Phys. 46 (1987)112	0.945±0.039 updated ICHEP < 0.31 (95 % C.L.)
$\tau(B_c)$	~ 0.5 psec	largest lifetime diff. !	0.46± 0.17 psec
$\tau(\Lambda_b)/\tau(B_d)$	0.9 – 1.0	quark model matrix elem.	0.79 ± 0.05

- o Predictions for meson life times on the mark!
- o recent lattice study (Di Piero & Sachrajda):

$$\frac{\tau(B^*)}{\tau(B_d)} = 1.03 \pm 0.02 \pm 0.03$$

o need more precise data on τ(B_s) (see later)

$$\frac{\tau(B_e)}{\tau(B_d)} \sim \frac{1}{3}$$

- o largest lifetime difference by far!
- o absence of 1/mo contribution crucial!
- serious challenge from "short" baryon lifetime

$$\frac{\tau(\Lambda_b)}{\tau(B_d)} \equiv 1 - \Delta$$

$$\Delta_m \simeq 0.03 - 0.12$$
 quark model Uraltsev $\Delta_m \approx 0.13 - 0.21$ QCD SR Huang et al. $\Delta_{\rm exp} \simeq 0.21 \pm 0.05$

o pilot lattice study

$$\Delta_{lattice} \simeq (0.07 - 0.09) \pm ?$$

 \circ $\tau(\Xi_b^-)$ vs. $\tau(\Lambda_b)$ vs. $\tau(\Xi_b^{0})$?

$$\circ \tau(\Xi_b^-) > \tau(\Lambda_b), \tau(\Xi_b^0)$$

 $\odot [\tau(\Xi_b^-) - \tau(\Lambda_b)]/\tau(\Lambda_b) \sim 14 \%$ Volosh, Gub.et al.

from observed
$$\tau(\Xi_c^+)$$
 - $\tau(\Lambda_c)$

Heresy

- $\Gamma(H_Q) \propto M^5(H_Q)$ rather than m^5_Q Al et al. ⇒ $\tau(\Lambda_b)/\tau(B_d) \sim 0.75$
- o anathema to the OPE!
 - represents large contribution of O(1/m_o)
 - sum rules in OPE enforce Bi Sh Ur Va quark phase space + nonperturb. corrections

hadronic phase space + boundstate corrections

- ⇒ would constitute rather massive violation of duality
- other predictions

$$\tau(B_s)/\tau(B_d) \sim 0.94!$$

$$\frac{\tau(\Xi_b^0)}{\tau(\Lambda_b)} = \frac{\tau(\Xi_b^-)}{\tau(\Lambda_b)} = \left(\frac{M(\Xi_b)}{M(\Lambda_b)}\right)^5 \sim 0.86 !$$

II.3 Exclusive NL decays $B \rightarrow M_1 M_2$

- guidance by symmetry considerations
 SU(2) [SU(3)]
- phenomenological models
 central assumption concept of factorization

 $< M_1 M_2 |JJ'|B> \approx < M_1 |J|B> < M_2 |J'|0>$

 invoke 1/N_C counting rules to justify factorization;

however

- no realistic hope to evaluate nonleading terms (no FSI!)
- \sim N_C = 3

- yet models still very useful if used with awareness and common sense
 host of well-measured BR's: referee
 for the games
 FI,Ho,HY C
- o theoretical treatment -- new frontier!

 puts the bar higher for models
 - a conditio sine qua non
 large energy release ⇒ hard process
 - colour transparency' ...

elements have been around -- but now are combined into comprehensive and detailed framework

- 2 groups
- Beneke Buchalla Neubert Sachrajda
 'QCD factorization'
- Keum Li Sanda

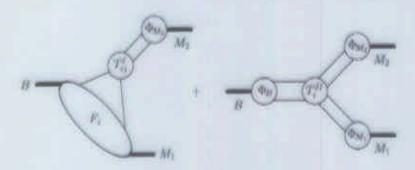
'pQCD factorization'

ring of truth

factorization theorem:

- non-universal
- apparent differences between 2 approaches
 - BBNS: FSI mostly small in B → Kπ,ππ;
 WA suppressed
 - KLS: WA important, FSI not small

QCD factorization formula


Hard gluon effects $(k>m_b)$ can be calculated and lead to the effective hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{i} \lambda_i^{\text{CKM}} C_i(\mu) Q_i(\mu)$$

Principal idea: factorize systematically the remaining hard effects $(k \sim m_b)$ from long-distance effects $(k \sim \Lambda_{\rm QCD})$ – heavy quark expansion. Result is:

$$\langle \pi K | Q_i | B \rangle = f_+^{B \to \pi}(0) f_K T_{K,i}^{\mathrm{I}} * \Phi_K$$

$$+ f_+^{B \to K}(0) f_\pi T_{\pi,i}^{\mathrm{I}} * \Phi_\pi + \underbrace{f_B f_K f_\pi T_i^{\mathrm{II}} * \Phi_B * \Phi_K * \Phi_\pi}_{\text{spectator interaction}}$$

- long-distance: form factor, decay constant, light-cone distribution amplitudes
- short-distance: kernels $T^{I,II}=\alpha_s^0+\alpha_s^1+\ldots$, contain all "non-factorizable" corrections and strong phases.

III: CP averaged branching fraction ratios

Despite significant corrections to naive factorization, the qualitative pattern that emerges for the set of $\pi\pi$ and πK decay modes is similar to that of naive factorization:

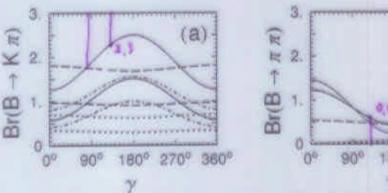
the penguin–tree interference is constructive (destructive) in $B\to\pi^+\pi^-$ ($B\to\pi^-K^+$) decays if $\gamma<90^\circ$. Taking the currently favoured range $\gamma=(60\pm20)^\circ$, we find [CLEO, hep-ex/0001010 in brackets]:

$$\frac{\mathsf{Br}(\pi^+\pi^-)}{\mathsf{Br}(\pi^\mp K^\pm)} \ = \ 0.5 - 1.9 \ [0.25 \pm 0.10] \ \frac{\mathsf{0.3420.36}}{\mathsf{0.3425.35}} \, \mathbf{R}$$

$$\frac{\mathsf{Br}(\pi^\mp K^\pm)}{2\mathsf{Br}(\pi^0 K^0)} \ = \ 0.9 - 1.4 \ [0.59 \pm 0.27] \ \mathbf{0.3425.35} \, \mathbf{R}$$

$$\frac{2\mathsf{Br}(\pi^0 K^\pm)}{\mathsf{Br}(\pi^\pm K^0)} \ = \ 0.9 - 1.3 \ [1.27 \pm 0.47] \ \mathbf{2.3425.35} \, \mathbf{R}$$

$$\frac{\mathsf{R}}{\mathsf{R}} = \frac{\mathsf{Br}(\pi^\pm K^\pm)}{\mathsf{R}} = \ 0.9 - 1.3 \ [1.27 \pm 0.47] \ \mathbf{2.3425.35} \, \mathbf{R}$$


$$\frac{\mathsf{R}}{\mathsf{R}} = \frac{\mathsf{Br}(\pi^\pm K^\pm)}{\mathsf{R}} = \ 0.6 - 1.0 \ [1.00 \pm 0.30] \ \mathbf{3.3425.35} \, \mathbf{R}$$

The near equality of the second and the third ratios is a result of isospin symmetry.

We find (almost independently of γ):

$$\text{Br}(B \to \pi^0 K^0) = (4.5 \pm 2.5) \times 10^{-6} (V_{cb}/0.039)^2 (f_+^{B \to \pi}(0)/0.3)^2$$

W.S. How ex al. (99) forcerization approach m - 40 GeV FIGURES

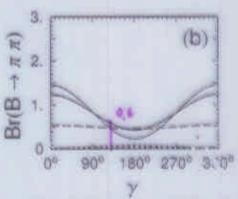


FIG. 1. (a) Solid, dash, dotdash and dots for $B \to K^+\pi^-$, $K^0\pi^+$, $K^+\pi^0$ and $K^0\pi^0$, for $m_t =$ 105 (upper curves) and 200 MeV. (b) Solid, dash and dots for $B \to \pi^+\pi^-, \pi^+\pi^0$ and $\pi^0\pi^0$ for $m_d=2m_u=3$ and 6.4 MeV, where the lower (upper) curve at $\gamma=180^\circ$ for $\pi^+\pi^-$ ($\pi^0\pi^0$) in for lower m_{ud} , in all figures Brs are in units of 10^{-6} , and $|V_{ub}/V_{cb}| = 0.08$.

PACD (9-95") CLEO data (central values) B (B + K T +) - 18,2 ×10 (20 ×10) Keam, Li, Sanda B (80 + K227) - 17.2 x156 (19x106) $R = \frac{B(B^{0} \rightarrow \chi^{2}\chi^{2})}{B(B^{2} \rightarrow \chi^{0}\chi^{2})} - \frac{4.3 \times 10^{-6}}{(6.3 \times 10^{-6}, Belle)} \frac{(6.6 \times 10^{-6})}{(6.3 \times 10^{-6}, Belle)} \frac{Lu. (4kai., Yang)}{(6.3 \times 10^{-6}, Belle)} = \frac{B(B^{0} \rightarrow \chi^{0}\chi^{2})}{(6.3 \times 10^{-6}, Belle)} = \frac{4.3 \times 10^{-6}}{(6.6 \times 10^{-6})} = \frac{1}{3} - 90^{\circ}$ $R_{\mathcal{K}} = \frac{B \left(B^0 \to k^2 \lambda^4\right)}{B \left(B^0 \to \lambda^2 \lambda^4\right)} \sim 4$

The $\Delta I = 1/2$ Saga

Pa,So,HY Ch,Fa

phrased as concise

compact explanation?

several dynamical enhancements found -- never of sufficient size, though after large value for ϵ'/ϵ was established (and for some heretics even before):

face up to this challenge!

lack of success rationalized: in ϵ'/ϵ ignore origin of $\Delta I=1/2$ rule (wait for lattice QCD)

exact value of ϵ'/ϵ -- much harder question (and history does not represent one of the glory pages of theor. HEP)!

 \circ $\mathcal{L}(\Delta S=1)$ under good theoretical control

Bu et al.

Fabb: 'educated guess'

$$\epsilon'/\epsilon \sim 10^{-3}$$

- considerable uncertainties in the size of hadronic matrix elements
- magnified by the presence of several relevant operators.

III. Rare $\Delta S=1 \& \Delta B=1$ Decays

$$K^+ \rightarrow \pi^+ \nu \nu$$

BNL E787, Komat.

BR(K⁺
$$\rightarrow \pi^+ \nu \nu$$
) = (1.5 +3.4-1.2) × 10⁻¹⁰

sensitivity will be 0.7×10^{-10}

E949 sensitivity expected $(8-14) \times 10^{-12}$

SM:
$$(0.82 \pm 0.32) \times 10^{-10}$$

$$B \rightarrow \gamma X, l^+l^- X$$

the first ~ correctly predicted Penguin!

$$BR(H_b \to \gamma X_{no \text{ charm}}) =$$
 $(3.15 \pm 0.35 \pm 0.32 \pm 0.26) \times 10^{-4}$ CLEO
 $BR(H_b \to \gamma X_{no \text{ charm}}) =$
 $(3.34 \pm 0.5 \pm 0.35 \pm 0.28) \times 10^{-4}$ BELLE

Misiak

- many new calculations } impressive theor, machinery new contrib. ~ cancel
 - · careful analysis of & spectrum
 - BR(B→ L+L-Xs) sc[0.05,0.25] = (1.46±0.19) x 10-6
 - impact of New Physics different for $B \rightarrow \chi X$ and $B \rightarrow l^+l^- X$

IV. CP Violation in ∆S≠0 Decays

$$\epsilon'/\epsilon$$

$$\eta_{+-} = \epsilon + \epsilon'$$
, $\eta_{00} = \epsilon - 2 \epsilon'$

$$\frac{\varepsilon'}{\varepsilon} = \frac{1}{\sqrt{2}} \left\{ \frac{\left\langle (\pi\pi)_{I=2} | H_W | K_L \right\rangle}{\left\langle (\pi\pi)_{I=0} | H_W | K_L \right\rangle} - \frac{\left\langle (\pi\pi)_{I=2} | H_W | K_S \right\rangle}{\left\langle (\pi\pi)_{I=0} | H_W | K_S \right\rangle} \right\}$$

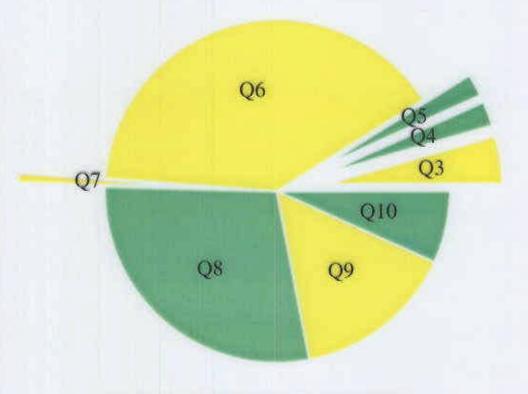
- $\Delta I=1/2$ rule
- o single KM phase

 $0 \neq \epsilon'/\epsilon \ll 1/20$

o m_t large

 ϵ

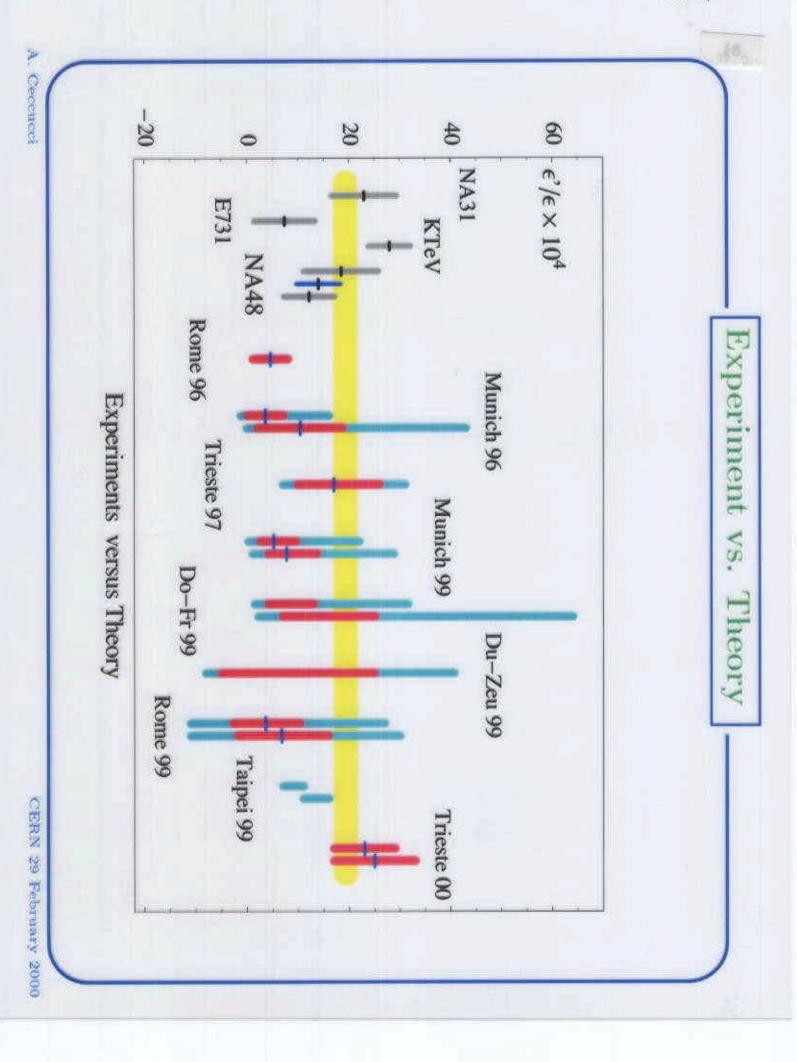
∝ log m,

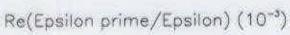

 $\propto m_{\rm t}^{\,2}$

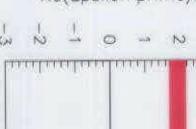
E

15 m

THE ε'/ε PIE


Gluonic Penguins




Electroweak Penguins and Box

Vacuum Saturation Approximation to the hadronic matrix elements of the effective four-quark operators.

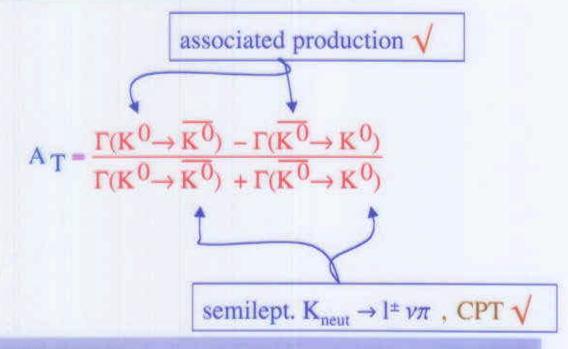
In Yellow (Green) the Positive (Negative) contributions.

Woods 1986 E7310 NA31 88/89 KTeV HOH 97 1 NA48

98 HO-

New world average:

$$\text{Re}(\varepsilon'/\varepsilon) = (19.3 \pm 2.4) \times 10^{-4}$$


$$\chi^2/ndf = 11.1/5$$

A. Ceccucci

Direct Evidence for T Violation

$$K^0 \Rightarrow K^0 \text{ vs. } K^0 \Rightarrow K^0$$
The `Kabir Test'

CPLEAR:

$$A_T = (6.6 \pm 1.3 \pm 1.0) \times 10^{-3} \neq 0$$

vs. $(6.54 \pm 0.24) \times 10^{-3}$ \checkmark

39

$K_L \rightarrow \pi^+\pi^-\,e^+e^-$ and its T odd correlation

$$\phi = \mathcal{L} (\mathbf{n}_{\parallel}, \mathbf{n}_{\pi})$$

$$\mathbf{n}_{\parallel} = \mathbf{p}(e^{+}) \times \mathbf{p}(e^{-}) / | \mathbf{p}(e^{+}) \times \mathbf{p}(e^{-}) |$$

$$\mathbf{n}_{\pi} = \mathbf{p}(\pi^{+}) \times \mathbf{p}(\pi^{-}) / | \mathbf{p}(\pi^{+}) \times \mathbf{p}(\pi^{-}) |$$

$$d\Gamma/d\phi = \Gamma_{\parallel} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi + \Gamma_{3} \cos\phi \sin\phi$$

$$T,CP$$

$$-\cos\phi \sin\phi$$

$$(13.6 \pm 2.5 \pm 1.2)\%, KTeV$$

$$(14.3 \pm 1.3)\%, Se Wa$$

$$\eta_{+-} \text{ effect!}$$

can be made consistent with T $\sqrt{\ }$ --- Bi Sa at the price of \bigcirc T $\sim 10^{-3}$ in

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$$
!

V. CP Violation in ΔB≠0 Decays

wide-spread attitude:

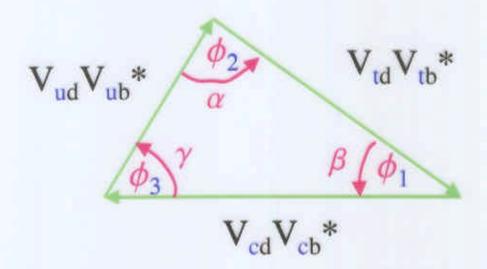
o observing a CP asymmetry in

$$B_d \rightarrow \psi K_S$$

no big deal since expected -- unless its value falls clearly outside predicted range;

o observing a CP asymmetry in

$$B_d \rightarrow \pi^+ \pi^-$$


no big deal either, since it cannot be interpreted cleanly in terms of CKM parameters and its value is hardly constrained.

such sentiments miss the paradigmatic character of such observations:

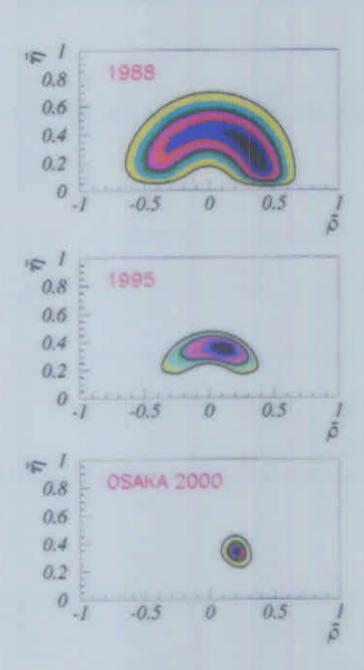
- o an asymmetry in $B_d \rightarrow \psi K_S$
 - would be the first CP violation directly observed outside K_L decays,
 - would have to be big to be established in the near future and
 - would establish the KM ansatz as a
 - -- if not the -- major agent of CP violation!
- o likewise an asymmetry in $B_d \rightarrow \pi^+ \pi^$
 - again would have to be big to be established in the near future and
 - would probably reveal direct CP violation to be huge in beauty decays!

V.1 CKM Trigonometry, Part I

'the' KM unitarity triangle

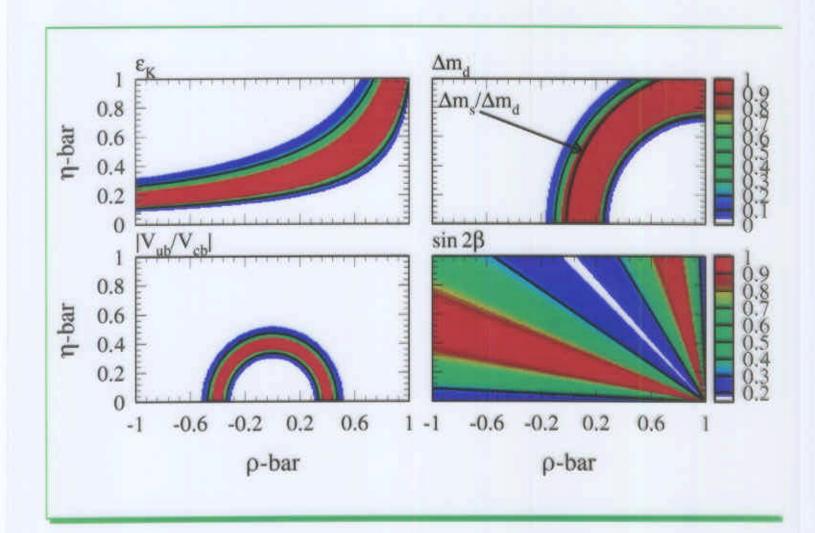
 ϕ_i opposite side with $V_{id}V_{ib}^*$

$$\phi_1 = \pi - \arg\left(\frac{-V_{tb}^* V_{td}}{-V_{cb}^* V_{cd}}\right)$$


$$\phi_2 = \arg\left(\frac{V_{tb}^* V_{td}}{-V_{ub}^* V_{ud}}\right)$$

$$\phi_3 = \arg \left(\frac{V_{ub}^* V_{ud}}{-V_{cb}^* V_{cd}} \right)$$

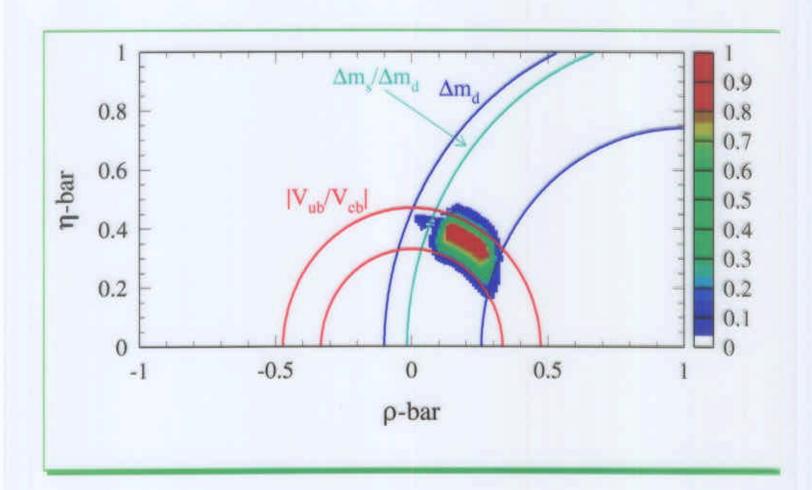
2 classes of observables:


- o CP insensitive rates ⇒ sides
 - \rightarrow b \rightarrow 1 ν u / b \rightarrow 1 ν c \Rightarrow $|V_{ub}/V_{cb}|$
 - $\rightarrow \Delta m(B_d)/\Delta m(B_s) \Rightarrow |V_{td}/V_{ts}|$
 - $ightharpoonup K^+ o \pi^+ \nu \nu \qquad \Rightarrow |V_{td}/V_{ts}|$
- CP asymmetries ⇒ angles
 - $ightharpoonup \epsilon_{\rm K}/\Delta m({\rm B_d}) \qquad \Rightarrow \sim \phi_1$
 - ightharpoonup B → ψ K_S \Rightarrow φ₁

plots

CKM-FITTER:

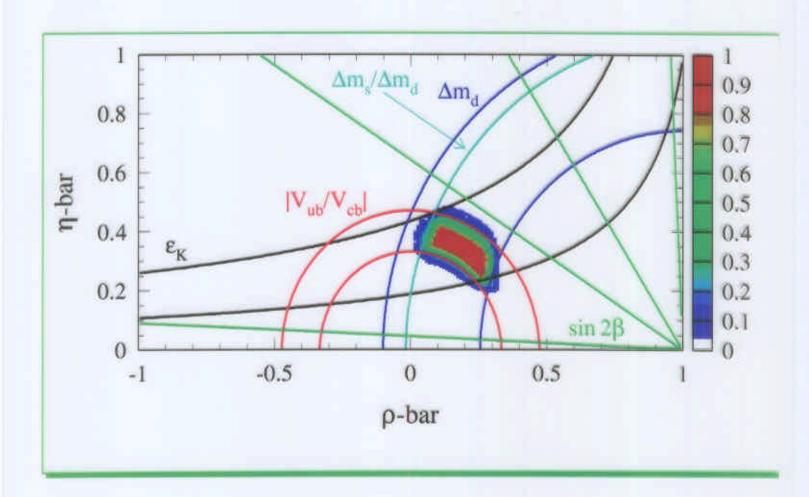
CONSTRAINTS IN THE $\rho - \eta$ PLANE


Andreas Höcker, Heiko Lacker, Sandrine Laplace and Francois Le Diberder

CKM-FITTER:

CONSTRAINTS IN THE $\rho - \eta$ PLANE

Indirect Evidence for CP-violation:


• Constraints without ϵ_K and $\sin 2\beta$

Andreas Höcker, Heiko Lacker, Sandrine Laplace and Francois Le Diberder

CKM-FITTER:

CONSTRAINTS IN THE $\rho - \eta$ PLANE

Andreas Höcker, Heiko Lacker, Sandrine Laplace and Francois Le Diberder

with caveats to be discussed below present analyses (e.g. Stoc, DiLe) suggest: $\sin 2\phi_1 = 0.716 \pm 0.070 \leftrightarrow 0.7 \pm 0.2$ $\sin 2\phi_2 = -0.26 \pm 0.28 \leftrightarrow -0.25 \pm 0.7$ $\phi_3 = 59.3^{\circ} \pm 7.3^{\circ}$

$$B \to \psi K_S$$

• CDF:
$$\sin 2 \phi_1 = 0.79 \pm 0.44$$

o BELLE:
$$\sin 2 \phi_1 = 0.45$$
 $\left\{ -0.43 + 0.07 - 0.44 - 0.09 \right\}$

• BaBar:
$$\sin 2 \phi_1 = 0.12 \pm 0.37 \pm 0.09$$

what if `Michelson-Morley outcome' $\sin 2 \phi_1 \le 0.1 ! ?$

CKM ruled out as major player in

$$K_L \to \pi \pi$$

no plausible deniability!

new puzzle: why is CKM phase so small?

VI. Probing for New Physics

- historic precedent $\Delta S \neq 1,2$
- ⇒ instrumental for emergence of SM through `qualitative' discrepencies
- o can happen again
 - $\Delta C \neq 0$
 - □ EDM's
 - □ K_{µ3} ...
- o different situation in $\Delta B \neq 1,2$

more complex

more opportunities

more challenges

quantitative discrepencies

control over uncertainties!

VI.1 KM Trigonometry, Part II

3x3 unitary matrix ⇒ 6 triangles with same area!

bd triangle

$$V^*_{ub}V_{ud} + V^*_{cb}V_{cd} + V^*_{tb}V_{td} = \delta_{bd} = 0$$

2 tu triangle

$$V^*_{ud}V_{td} + V^*_{us}V_{ts} + V^*_{ub}V_{tb} = \delta_{tu} = 0$$

8 bs triangle

$$V_{us}^*V_{ub}^* + V_{cs}^*V_{cb}^* + V_{ts}^*V_{tb}^* = \delta_{bs}^* = 0$$

4 tc triangle

$$V_{td}^*V_{cd} + V_{ts}^*V_{cs} + V_{tb}^*V_{cb} = \delta_{tc} = 0$$

6 sd triangle

$$V_{ud}^*V_{us} + V_{cd}^*V_{cs} + V_{td}^*V_{ts} = \delta_{sd} = 0$$

6 cu triangle

$$V_{ud}^*V_{cd} + V_{us}^*V_{cs} + V_{ub}^*V_{cb} = \delta_{cu} = 0$$

there are three classes of angles:

- angles of order unity like ϕ_1 , ϕ_2 and ϕ_3 ; they differ from each other in $O(\lambda^2)$.
- 2 angles that are themselves $\sim O(\lambda^2)$; the most accessible representative is an angle in the bs triangle, often referred to as χ :

$$\chi = \phi_1^{\text{bs}} = \pi + \arg\left(\frac{\mathbf{V}_{cs}^* \mathbf{V}_{cb}}{\mathbf{V}_{ts}^* \mathbf{V}_{tb}}\right) \approx \lambda^2 \eta$$

it controls the CP asymmetry in

$$B_s \to \psi \eta, \psi \phi$$
 BS '80

angles that are themselves $\sim O(\lambda^4)$; the least un accessible representative is an angle in the *cu* triangle, often referred to as χ ':

$$\chi' = \phi_3^{\text{cu}} = \arg\left(\frac{-V_{\text{ud}}^* V_{\text{ed}}}{V_{\text{us}}^* V_{\text{cs}}}\right) \approx -\lambda^4 A^2 \eta$$

it controls CP asymmetries in D decays

- ⇒ 3 step strategy:
 - measure the large angles ϕ_1 , ϕ_2 , ϕ_3 and their `cousins' and check their correlations with the sides
 - check whether the small [tiny] angle χ [χ '] are indeed small
 - measure as many of the angles as possible and analyze their correlations.

search for New Physics

> probe of features of New Physics

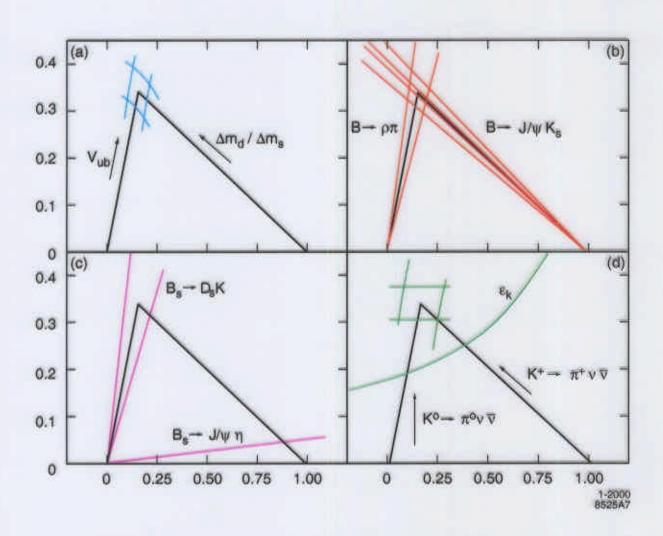


Figure 8: Illustration of four determinations of the unitarity triangle, by (a) non-CP observables, (b) B asymmetries, (c) B_s asymmetries, (d) K rare decays. See the text for more details.

easier said than done

- systematic experimental uncertainties!
- experiments could be wrong!
- 'Combiner' Hoecker, Laplace, Le Diberder
- o theoretical uncertainties!

meaning of theoretical uncertainties?

my 'definition' for stating theor. uncertainties:

"I would be very surprised if the true value would fall outside the stated range."

obviously hard to quantitfy

remember $\epsilon'/\epsilon!$ Be Fa plot

- theoret. uncertainties mostly like
 systematic uncertainties with hidden
 correlations
- they can be evaluated only through
 overconstraints or `redundant'extractions
- prior to that predictions should be considered `preliminary'

a triangle analysis better be much more sturdy than a bunraku stage!

'good decisions derive from experience that often is based on bad decisions'

VI.2 D⁰-D⁰ Oscillations and CP Violation

charm usually seen as the dull cousin of beauty

- CKM parameters V_{cs} & V_{cd} `known'
 due to unitarity
- slow D⁰ D⁰ oscillations
- tiny CP asymmetries
- ~ zero background search for New Physics

however ...

- ? how slow is slow?
- ? how tiny is tiny?

VI.2.a D⁰-D⁰ Oscillations

2 quantities control D⁰-D⁰ oscillations:

$$x_{D} = \frac{\Delta m_{D}}{\Gamma_{D}}$$
 $y_{D} = \frac{\Delta \Gamma_{D}}{2\Gamma_{D}}$

$$\mathbf{r}_{\mathrm{D}} = \frac{\Gamma\left(\mathbf{D}^{0} \to l^{-} X\right)}{\Gamma\left(\mathbf{D}^{0} \to l^{+} X\right)} \approx \frac{x_{D}^{2} + y_{D}^{2}}{2} \qquad \text{for } x_{D}, y_{D} << 1$$

- x_D and y_D Cabibbo suppressed
- $x_D = 0 = y_D$ in the $SU(3)_{Fl}$ limit
- \rightarrow x_D, y_D < 0.05

a conservative estimate

$$x_D, y_D \sim O(0.01)$$

popular claims

- $x_{D}(SM)|_{OPE} << x_{D}(SM)|_{LD}$ $y_{D}(SM)|_{OPE} << y_{D}(SM)|_{LD}$
- o $x_D (SM)|_{LD}$, $y_D (SM)|_{LD} \sim 10^{-4} 10^{-3}$ general expectations
- ΔΓ: on-shell contributions
 - ~ insensitive to New Physics
- Δm: virtual intermediate states
- sensitive to New Physics
 x_D ~ O (few %) conceivable
 more careful analysis
- $x_D (SM) |_{OPE}, y_D (SM) |_{OPE} \sim O (10^{-3})$
- o central theoretical issue: does quark-hadron duality hold at the charm scale already?
- o more averaging in x_D than in y_D
 - duality better in x_D than in y_D

data

$$y_{CP} = 0.8 \pm 2.9 \pm 1.0 \%$$

CLEO

$$-5.8 \% < y'_{CP} < 1 \%$$
 (95 % C.L.)

FOCUS

$$y_{CP} = 3.42 \pm 1.39 \pm 0.74 \%$$

for
$$x_D \le \text{few x } 10^{-3}$$
: $1/m_c \text{ expan.}$

if $y_D \sim 0.01 \ \langle$

okay!

for $x_D \sim 0.01$: theor. conundrum

sobering lesson:

case for New Physics based on xD uncertain!

VI.2.b CP Violation in Charm Decays

- o P involving D⁰ D⁰ oscillations
 - ightharpoonup D⁰ ightharpoonup K+K- vs. D⁰ ightharpoonup K+K-
 - \rightarrow D⁰ \rightarrow K⁺ π ⁻ vs. D⁰ \rightarrow K⁻ π ⁺

CP asymmetry given by

 $\sin \Delta m_D t \operatorname{Im} \rho(D \to f)$

small

in

SM KM

strong case for New Physics!

direct TR in Cabibbo supp. modes

KM - O(10-3) effects

unclear case ?!

VI.3 Probe for New Physics in $\Delta S = 1$

$$P_T(\mu)$$
 in $K^+ \Rightarrow \mu^+ \pi^0 \nu$

T odd correlation

$$P_{\perp} \equiv \langle \mathbf{s}_{\mu} \cdot (\mathbf{p}_{\mu} \times \mathbf{p}_{\pi}) / | \mathbf{p}_{\mu} \times \mathbf{p}_{\pi} | \rangle$$

can be 'faked' by final state interactions

$$P_{\perp} \propto \text{Im } \xi, \ \xi = f_{\perp}/f_{+}$$

New Physics ~ Higgs-X!

o `ancient' result:

Im
$$\xi = -0.01 \pm 0.019 \Leftrightarrow P_{\perp} = (-1.85 \pm 3.6) \cdot 10^{-3}$$

- o $P_{\perp} \sim 10^{-6}$ from final state interactions
- o new result: Aoki

Im
$$\xi = -0.013 \pm 0.016 \pm 0.003$$

VI.4 Electric Dipole Moments

energy shift $\Delta \mathcal{E}$ of system inside electric field E:

$$\Delta \mathcal{E} = \mathbf{d}_{i} E_{i} + \mathbf{d}_{ij} E_{i} E_{j} + \dots$$

1

linear in E

 $\mathbf{d} \propto \mathbf{s} \Rightarrow \mathbf{d} \neq \mathbf{0} \Leftrightarrow \text{T violation !}$

o experim. bounds

$$d_{\text{neutron}} < 9.7 \cdot 10^{-26}$$
 e cm

$$d_{elektron} = (-0.3 \pm 0.8) \cdot 10^{-26} e cm$$

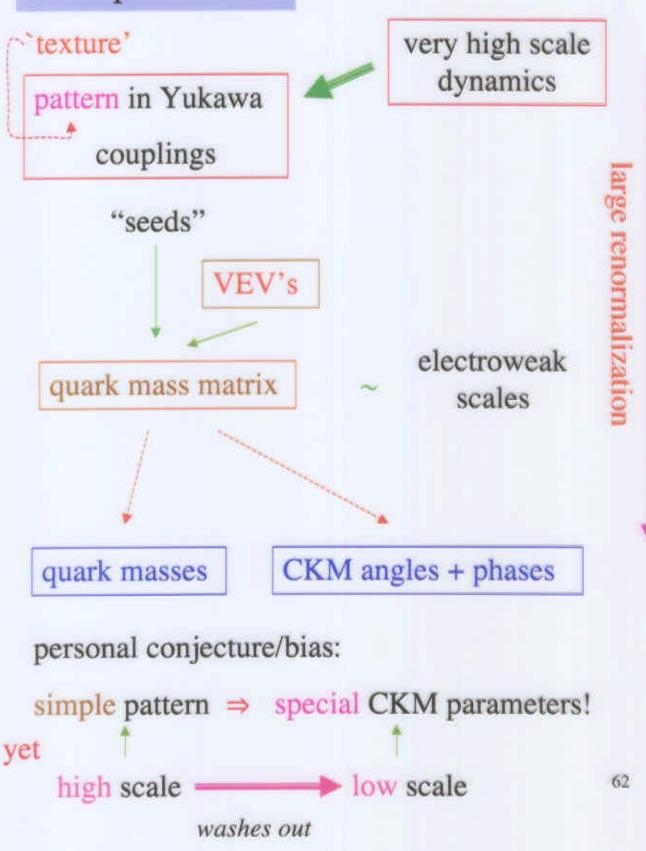
o theoret. expectations

$$\circ$$
 CKM: $d_{neutron} < 10^{-30}$ e cm

$$\Rightarrow$$
 SM: $d_{neutron} \sim 10^{-9} \cdot \theta_{QCD} e cm$

many New Physics scenarios:

$$d_{\text{neutron}}, d_{\text{elektron}} > 10^{-27}$$
 e cm


a definite must for experimental study!

VI.5 Glazing into the Crystal Ball

- o my own expectation on beauty physics:
 - → various large (> 10 %) CP
 asymmetries will be found in B decays
 - including direct CP violation
 - that agree with the CKM expectation to first order
 - ⇒ yet exhibit some smallish, though definite deviations ⇒ New Physics!
- however it is conceivable that the whole future beauty phenomenology can be accommodated in the CKM ansatz --

were our efforts for naught then?

an emphatic NO!

VII. Conclusions & Outlook

exciting & even decisive phase in flavour dynamics

- phenom. success of CKM description
 quite unreasonable ⇒ hidden message!
- o new (sub-)paradigms established or about to be established:
 - o direct CP in $\Delta S=1$: $\epsilon'/\epsilon \neq 0$
 - first evidence for CP outside K_L decays
 - 6 CKM predictions for CP in B decays about to be tested

high sensitivity probes of dynamics

many possible portals for New Physics!

- basic quantities known with good accuracy and the promise for even better:
 - $\delta m_b \sim 1.5 \%$ most precise quark mass
 - $\delta m_t \sim 3\% [10\%]$ direct [rad.corr.]
 - \Rightarrow $\delta V(cb) \sim 5 + \% \Rightarrow 2\%$ feasible
 - $\delta V(ub) \sim 40 \%$ $\rightarrow 10\%$ feasible
 - → 5% not impossible
 - ⇒ δV(td)~ 60 % → 10% not impossible high precision probes of dynamics!
- greatly improved practical theoret, technologies
 - increasing sophistication in treating SL & radiat. decays
 - \Rightarrow new frontier: exclusive NL B \rightarrow M₁M₂
 - compreh. classif. scheme based on QCD
 - promise to evaluate even non-leading effects in the real world

- need experimental program that allows precise measurements in a comprehensive way
- o other portals for New Physics:
 - \rightarrow d_N , d_e : any improvement in experim.

sensitivity could reveal effect!

- \rightarrow P in K $\rightarrow \mu \nu \pi$
- > charm decays:

CP & D0-D0 oscillations

- ... and: evidence for neutrino oscillations
- neutrino masses non-degenerate
- ⇒ lepton flavour ES ≠ lepton mass ES
- as analogue of CKM matrix

the M(aki-)N(akagawa-)S(akata) matrix

"leptons exactly like quarks -- only different"

colour singlets

 ν masses extremely tiny

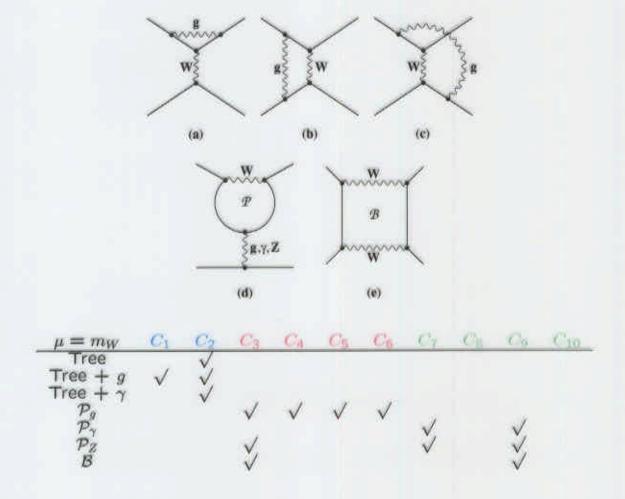
see-saw mechanism

$$\Rightarrow$$
 atm. ν 's $\iff \tau \rightarrow \mu \gamma$

solar
$$\nu$$
's $\Leftrightarrow \mu \to e \gamma$

Okada

(H)OPE: the Effective Lagrangian


$$\mathcal{L}_{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i} [v_i(\mu) + \tau \ y_i(\mu)] Q_i(\mu)$$
$$\tau = -V_{ud} V_{us}^* / V_{ud} V_{us}^*$$

For
$$\mu < m_c$$
 $(q = u, d, s)$:

$$\begin{array}{lll} Q_1 & = & \left(\overline{s}_{\alpha}u_{\beta}\right)_{\vee-A}\left(\overline{u}_{\beta}d_{\alpha}\right)_{\vee-A} \\ Q_2 & = & \left(\overline{s}u\right)_{\vee-A}\left(\overline{u}d\right)_{\vee-A} \end{array} \right\} & \quad \text{Current-Current} \\ \\ Q_{3,5} & = & \left(\overline{s}d\right)_{\vee-A}\sum_{q}\left(\overline{q}q\right)_{\vee\mp A} \\ Q_{4,6} & = & \left(\overline{s}_{\alpha}d_{\beta}\right)_{\vee-A}\sum_{q}\left(\overline{q}_{\beta}q_{\alpha}\right)_{\vee\mp A} \end{array} \right\} & \quad \text{Gluon "penguins"} \\ \\ Q_{7,9} & = & \frac{3}{2}\left(\overline{s}d\right)_{\vee-A}\sum_{q}\widehat{e}_{q}\left(\overline{q}q\right)_{\vee\pm A} \\ Q_{8,10} & = & \frac{3}{2}\left(\overline{s}_{\alpha}d_{\beta}\right)_{\vee-A}\sum_{q}\widehat{e}_{q}\left(\overline{q}_{\beta}q_{\alpha}\right)_{\vee\pm A} \end{array} \right\} & \quad \text{Electroweak "penguins"} \\ \end{array}$$

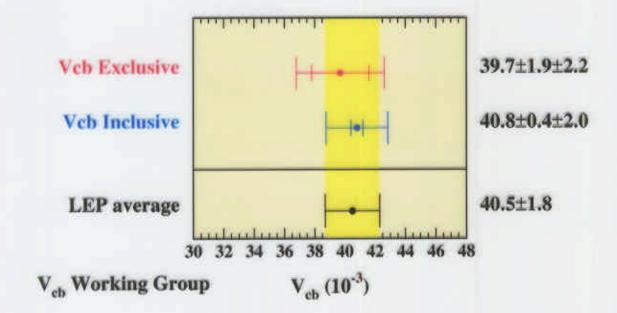
"Penguins" feel all three quark families in the loop: they are sensitive to the CP phase.

Standard model contributions to the matching of the quark operators in the effective flavor-changing Lagrangian

Calculation of four-quark matrix elements

The ideal approach

- A: Consistent definition of renormalized operators: correct scheme and scale matching with short-distance.
- B: Self-contained calculation of all hadronic matrix elements (including B_K).
- C: It reproduces simultaneously the $\Delta I=1/2$ selection rule and ε'/ε .


· VSA:

$$\langle \pi^{+}\pi^{-}|Q_{6}|K^{0}\rangle = 2\langle \pi^{-}|\overline{u}\gamma_{5}d|0\rangle\langle \pi^{+}|\overline{s}u|K^{0}\rangle$$

$$- 2\langle \pi^{+}\pi^{-}|\overline{d}d|0\rangle\langle 0|\overline{s}\gamma_{5}d|K^{0}\rangle$$

$$+ 2\left[\langle 0|\overline{s}s|0\rangle - \langle 0|\overline{d}d|0\rangle\right]\langle \pi^{+}\pi^{-}|\overline{s}\gamma_{5}d|K^{0}\rangle$$

- Phenomenological 1/N: Fix some of the matrix elements by fitting the $\Delta I=1/2$ rule and vary others around the 1/N values (München).
- Chiral Quark Model: All matrix elements at $O(p^4)$ in terms of $\langle \overline{q}q \rangle$, $\langle \frac{\alpha_s}{\pi} GG \rangle$, M, phenomenologically fixed via the $\Delta I \equiv 1/2$ rule (Trieste).
- Phenomenological NJL: Chiral loops up to $O(p^6)$ and fit to the $\Delta I = 1/2$ rule. It includes scalar, vector and axial-vector resonances (Dubna).
- 1/N: Chiral loops regularized via cutoff, partial O(p⁴) (Dortmund).
- 1/N and NJL: It includes scalar, vector and axial-vector resonances, good scale stability (Bijnens and Prades, 1999).
- Lattice: K → π matrix elements of four-quark operators. Use chiral symmetry to obtain K → ππ (Roma, RBC).

