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Why to Consider Possible Extensions of Time

Reversal?

i M“*A“?
t‘ L]
i) Direct time reversal ia‘i:oft studied enough. So it is

not clear yet if CPT can be violated at the elementary

level,

ii) Even if CPT is conserved there may be still parti-
cles with unusual time reversal properties, e.g. Wigner

types

02



In Which Ways Can Time Reversal be Extended?

There are two ways to extend time reversal:

i) By using the method of group extensions, which
amounts to associating a internal group in direct prod-
uct with Poincare group. The simplest analog is the
situation of parity in the standard model of electroweak
interactions.

ii) By considering the doubling of the Hilbert space in
projective representation of time reversal due to the an-
tiunitarity of time reversal, which is first studied by Wigner
and extended later 5. Weinberg,

Of course one can also consider a combination of the

two alternatives given above.
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What is our contribution?

i) We have clarified the physical content of the extended
time reversal, especially by embeding the scheme into
higher dimensional spaces;

it} furher studied these ideas more explicitly through a
toy model;

iii) pointed out the possibility of violation of CPT in the

context of field theory by using extended time reversal.
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Extension of Time Reversal Through Wigner

Types and Group Exfensions

The symmetry transformations in quantum theory, U(g)

are defined up to a phase factor
Ulg) = ¢“9U(g) g€ G (for some group G) (1)

because physical states are described by rays rather than
vectors in the corresponding Hilbert space. So the gen-
eral possible representation of G in quantum theory is a

projective representation where

U(g)U(g2) = "% (g190) g1, €GC  (2)
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Wigner Noticed that if one uses projective represen-
tation of time reversal there two types of time reversal
aperators:

)72 = -1
BTi=1
since 77 = wl (where w is some phase) because of Eq.(2),

hence (through associativity property of 7)
TT=wT =TT =w'T (8)

These possibilities can be realized through the following

representations
0 1UMK | o DK
T= , and T =
WK 0 UMK 0

respectively, where U(T') is some unitary matrix and K
stands for the antilinear part of T, which takes complex

conjugate of c-numbers.



8. Weinberg has given a generalization of these possi-
bilities by combining them in one general operator, that
I8,

0 U (T)K
T == (5)
e U (TVK 0
For spin 1/2 fields U(T) is a 4 x 4 matrix. So the minu-
mum dimension where the unusual Wigner types can

arise is an B-component spinor representation.
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Once we have adopted 8-component spinors we
have further possibilities for time reversal in ad-
dtion to those provided by Wigner types. One
can assign the upper and lower 4-component parts
of the 8-component spinor to different representa-
tions of internal group. Furthermore one can take
the upper and lower to be related by time rever-
sal as in the case 4-compoent gpinor and parity.
This offers us another way to extend the usual

time reversal.
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8-component spinor naturally arise in gpinor repre-
sentation of space-times with dimensions higher than 5.
For example consider a 6 dimensional Minkowski vector,
with the metric (gap)=(1, =1, -1, =1, =1, 1), embeded

in the corresponding Clifford algebra

V ‘i#:g’)’u 0 w

X=DMagy= y V=in+
g o 0
Tog+ T3 T — iy Ty — &y Ty 4+ iy
w = W= (
Ty +iwy o —ay | #1—ix @+ @3

We indentify zy by time. Then time reversal, X7 of X
is
OO o
-VA? ey’
X1 = =X m
izgy" WV



where either
[
vy 0

W= ? or

\ 0 iy'y*J

( ]

0 intJ 0 o

Fﬂ = or PG == T

; ~iytJ 0 | =¥*J 0

up to a phase. Here J stands for the antiunitary part
of time reversal, which takes the complex conjugate of
c-numbers.

The first time reversal operator corresponds to the
usual time reversal operator. The second time reversal
operator corresponds to the unusual Wigner types with
T% = 1 and the last one corresponds to the usual Wigner
types with 72 = —1 accomponied with a reversal of the
upper and lower components of the 8-component spinor.

If the upper and lower components are assigned to dif-

10
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ferent representations of the internal group then the last
two time reversal operators may include a transformation
in the internal space as in the case of parity. Hence the
following time reversal (where the time reversal causes a

gpatial inversion in the sixth direction) is also allowed
0 +2J
M= (9)
vJ 0

11
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Check of One Particle Results for Field Theory
We assumye that 8-component spinors arise from the Clifford algebira
of a higher dimensional space-time or the physical outcome of the un-
derlying theory is equivalent to this formulation, So particle species
are localized in the extra space-time coordinates and these coor-
dinates determine the internal quantum numbers of the particles,
Then the general wave expansion of & solution of the 8-dimensional
free Dirac equation, in terms of creation and annikilation operators,

is

P(Ft) = E f %E{b@, s) u(p, s) e*P7
+d'(p,5) v(p, ) €] (10)
where p.x = Et — 5.8, pp=m®

The form of the B-companent fermion field is essentially the same
a8 the 4-component fermion field  except w and » in this case are

12
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8-component spinors
u(w) = e (11)
uz(vg)
where wy (), ta(vy) are 4-component spinors.
Next we investigate if these time reversal operators
obtained for one particle theory apply in field formalism
as well in a consistent way. Similar to 4-component case

under time reversal (T'), ¢ transforms as
T:¥(#t) = JTOIT ™" = U(T)¥(&, —t)
- B[ B w020

+Ud! (p, YU~ v* (p, 5) e*P)

B L

d'(p,8)v*(~p,~s) "™ | pp=m? (12)

Il

where J is an antiunitary operator standing for time
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reversal and U denotes its unitary part. We have used

Ub(F, U™ = b(~7, ~8) , Ud(P, U = d(~F, ~3)
(19)
and changed variables p, s to their minuses in Eq.(12).
The u*(~p, —s) and v*(—p, —s) in (12)can be related Lo

u(p, s) and v(f, 8) in the usual way

u(=p, —8) = D(L(=))u(0, —s) , v(=p,—s) = D(L(-p))v(0, ~s)
(14)

where D(L(5) stands for the representation of Lorentz

boost (from zero momentum to p) corresponding to W.

For an n dimensional space D is given by
D(L(p)) = exp(%mw) , k=123 (15)
Jo = -i.[r'ﬂ, Y

Wek 18 the boost parameter
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One can explicitly check that for the time rever-
sal operators in Eq.(8) and Eq.(9) the following identities

are true

D*(L(~p) = ID(L(@™ (16)

0 u*(0, —8) = (—1)¥ (0, ) (17)

where the subscript p stands for the fact that the extra
space-time dimension dependence (which corresponds to
internal space dependence in our identification) of u, in
general, may change after time reversal. The last identity
directly follows from the fact that wy(vq) is the time re-
versal of uy(vy) in Eq.(11). After using Eq.(16) in Bq.(12)
one arrives to the same transformation rulé as one par-

ticle theory.
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A Toy Model

In the light of the above discussion and the possibility of doubling
the Hilbert space due to the anti-unitary nature of time reversal we
shall give a realization of the theoretical framework for extended
time reversal discused above. We shall discuss some of its implica-
tions in this section and some others in the following section. There
are three main routes one can follow for this purpose:
i) One can couple some (usual) fermions to (usual) time revesal of
some other (usual) fermions provided each set has different inter-
nal group representations. In this case the extended time reversal
amounts to the usual time reversal followed by a Z; internal space
transformation. In other words we extend the definition of time re-
versal as the usual time reversal followed by an intringic time reversal
trangformation ( the intringie time reversal degree of fresdom can be

identified, for example, with the different transformation properties

16
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of 1y and 4y under the internal group as in the standard model in
the case of parity), that is,

T :tha(p) = T : damy(prea)

Vi (&, t) ~ T : thapy (&, ~1) (18)
The second line of Hq.(18) effectively means that the

spinor part of iy behaves as the time reversed of ).

We couple 4y, 1, through the following interaction

£ = mapyady + mypatpy + Mplapy + Meplupy

=wiMw (19)
Y'm M Y

M = v = (20)
M +"m | i

After the inclusion of the fermion kinetic term the La-
grangian becomes
L=9D,"V + IMY (21)

g
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: m M ¥ 0
W = M == (22)
The lagrangain Fq.(19) introduces no time additional
time reversal violation other than the one in the 4-component
case through CP violation. However if we change Eq.(19)

into

£ = mapyah +m'haps + Mipleps + Moplyy

R (23)

there will be an additional source of time reversal for
m' # m. One can suppress this violation by taking [m —
m'| << m. The physical content of the model can be
seen better by the diagonalization of the corresponding
M which results in two 4-component spinors ), ¥°,

oy — Mauy , 0 o My +m"ihy

18
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m” = =(m—m' + /(m + m')? — dmm’ + M)

B3] =

So the physical fertnions are the mixtures of a set of fermions with
another et of fermions whose electric charges are opposite to the
original set. If one identifies ¢, with usual particles then the con-
servation of electric charge allows the mixing in Eq.(24) only for
neutrinos.

ii) The second option is to take the general form of time
reversai while agsuming that the particle does
not change its internal group representation under the
time reversal. We re-express the extended time reversal,
T as

0 emu(T) |

T= (25)
eMU(T) 0

The above form of T which is introduced by 8. Weinberg includes

the two cases, T2 =1and T2 = =1  assubeasos. 7% = 1 amd

14
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T? = ~1 correspond to " = 1 and ¢ = §, respectively. Although
the operator T2 generates superseloction roles for 77 = +1 (becasne
it commutes with all operators) This is not true for arbitrary value
of 1) becanse in that case T2 is nol proportional with unit matrix in
general. This allows mixing of the particle states belonging to the
Hilbert spaces 77 = —1 and T? =1,

" e fhyff ey
U= = o8 + sinn

e - etyiD S+ DY

where the superseripts (1) and (1) denote the 72 = —1 and 7% = |

subspacen, respectively. This mixing, in turn, makes it impossible
to absorb the phase n into redefinition of 4y and oy, However in
this case the Lagrangian (19) is not invariant under time reversal,
One can suppress the time reversal violation by taking M << m
in this case. One should also take 1 = 0 in order to remain in agree-

ment, with experimental data which has no evidence for the nnusual

20
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fermions with 72 = 1, Moreover one should take [m — m'| << m
(and M << m) so as not to run into conflict with experimental data
which has no evidence for additional light fermions,

iii) The last option is to take the extended time reversal
and furthermore to assign the upper and the lower com-
ponents of the 8-component spinor to different internal
group representations. This is similiar to the previous
option in its bevaiour for the Lagrangian in (19) but
there may be an additional time reversal violation in the
gauge sector due to the noninvaraince of time reversal
under the internal group transformations. The present
option is the most interesting one because one can assign
yyto the standard model gauge group while taking vy to
transform under a different gauge group. In this way one

does not need to impose the condition |m — m'| << m.

21
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Hence one can consider 4 as a good candidate for ster-
ile neutrinos. Another interesting aspect of this option
is that the validity of CPT theorem in this case is not

clear as we shall see in the next section.

21



8-component formulation and CPT

The Lagrangian in Eq.(19) is invariant under the inter-
change of the subscripts 1 and 2. One can also take the
other terms of the full Lagrangian invariant under this
interchange. In this case T transformation will be equiv-
alent to time reversal so that CPT theorem necessarily
holds. In other words CPT theorem is always true in the
case i) of the previous section. However one can make
the Lagrangian non-invariant under this interchange, for
example, by taking the mass term in front of ¥ty to be

different than the one in front of iy
£ = mibypy+m o+ Mplha+ Mabfhy = V'MW (27)

or one can take the general time reversal operator intro-

duced by S. Weinberg (which corresponds to the mix-
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ture of two Wigner types to make the applicablity of
CPT theorem questionable or one can take the case iii)
in the previous section, that is, both we adopt the ex-
tended time reversal and we assign the upper and the
lower 4-components of the 8-component spinor to differ-
ent internal group representations. In these cases CPT
invariance is not automatic as we shall see below,

CPT theorem states that the condition of weak local
commutivity for fields (which is satisfied by all reason-
able fields) is enough for the following equation to be

satisfied

(Wo, dul1)dulz).......dp(wn) Vo)
= i (< 1) (Wo, du(~21)Bu(—2)...o...p( ~ ) D GRE)

(where F' stands for the number of Majorana type fermions g
and I iz the angular m ¢ of ¥ Ty
L;h,u.,p)P:l )-ﬁ , SPEAT M P b‘(%i‘n A
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I. For each test function f defined on space-time, there

exists a set of ¢y (f), du(f), ..., dha(f) and their adjoints
which are defined on a domain D of vectors dense in the
Hilbert space, H. Furthermore D is a linear space con-
taining Wy, All the vectors obtained after the application
of (i- the Lorentz group transformations, ii- the field op-
erators) are in the physical Hilbert space, H. Moreover
for all ®, W € D € H and ¢,(f) being a field defined
as a functional of the test function f, (P, ¢, (f)¥) is &
tempered distribution.

[I. The equation

U(A, )y (F)U(A @)~ =3 Spela")du({A,a}f) (29)

is satisfied; here {A,a}f = fla~'(z — a))and U(A,a)
15 the ontberg "Wr;&”'}“*"“ of Psincare grevp
S



In the case of 4-component spinors CPT invariance
reduces to the validity of Eq.(28). This can be seen as
follows: Under the discrete space-time transformations

the usual fermions transform as

P : hya) (&, 8) = 790y 0( -, £)

C' : Yrga) (&, £) — ie oy (&, 1)

T : i) (&, t) = te" v y ") (£, =)

CPT : iy (&,8) = i Bo-Pr-BiSu gT (7 (3p)
here ¢ denotes the whole fermionic field ( not just the spinor part
on the contrary to the previous section) and the subscripts 1(2)
denote the upper and lower 4-component parts of the 8-comporent
spinor. The fermion bilinear X2 = A", under CPT',

transforms as
CPT : ' Ty? — °1'y* (31)

® s
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=T for I'=1,iys, 0w = [ Iyl
M= =T for v, %

where the superseripts A, B denote different species of fermious.
After contraction of X ™ with itself or with other X*™'s and com-
paring it with Hermitian conjugate of the original terms result in
Eq.(28). One can perform a similiar and simpler procedure for the
other type of fields (i.e. for scalars, vector fields, ete.) to get the
same conclusion. So in the usual 4-component spinor case the va-
lidity of Eq.(28) is equivalent to CPT invariance.

On the other hand in the case of extended-T this is nol the case.
For example take the second operator in Eq.(8) as the relavant ex-
tended time reversal operator

0 iy*J
M= (32)
- 0

while all other discrete space-time transformation remain



the same time reversal and CPT become

T : (2, t) = —-("F*)iﬂi&r'?i'ﬁ!{l:} (&, —t)
CPT : W(Z,) — iLeier+actan 09T (g, )
0 Emh

L= (33)
E"ﬂf 4 0

One can see from the above derivation that CPT invari-
ance is not equivalent to the validity of Eq.(28) in this

case. For example

CPT : WAMY? - — P LM LA (34)
So the requirement of the equality of the Hermitian con-
jugate of Eq.(34) to the original term does not imply
Eq.(28). If one takes T as the usual time reversal one
obtains Fq.(28) but then the hypothesis 11, Eq.(29) is
not satisfied because 1 mixes with 1 so ¢y does not

span the whole physical Hilbert space
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One can understand the above conclusion through a
more physical argument as follows:
i) In the case of of extension by Wigner types the mixture
of different types causes mixture of 72 odd and even
terms in fermion bilinears,
ii) In the case of extension by group extensions 7" causes a
rotation in the internal space while there is no additional
transformation similar to C' to compansate this rotation.
(After one introducss an invrinsic parity & PT transformution (on the spinor
part of the fermion field) in the spinor reprossmtation of the Lorents group Is
not aquivalent to identity because P ls not vhe slmple space inversion snymore.
However one can lntroduce the charge confugation, € so that C P s offectivelay
equivialent 1o space invergion go that CPT oo the spinge part of the fermion

field s equivalant to identity.

w 27
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Conclusions

i) One can give an extended form of time reversal in
space-times higher than 5 by using either extending time
reversal by non-trivial internal group representations or
by Wigner types.

i) It is possible to violate CPT in this scheme without

going outside of field theory.

230
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In this appendix we shall show that the terms with the cosfficients
M in the Lagrangian of Eq.(19) are really Lorentz invariant although
they seem to be Lorentz non-invariant at first sight.

More explicitly by the second line of Eq.(18) we mean that we
have two 4-component fermion fields v, and 9, which transform
under the proper homogenous Loventz group as usual

Wi = Ay, Wy - Ay (35)

s, 0
A=
I 7

where sy, 5 are the SL(2,C') transformations given in Bq.(77). We
define 4 to be similar to the usual time reversed of o, that is,

(1) = Thy(#, ~1) (6)
In fact this is what we mean by the second line of Hq.(18).
By using Eq,(A1), Fq.(A2), and antiunitarity of T' the transfor-
mation rule of ¢y can be determined
Va(#, 1) = T (AYG(E, ~t)) = 'y AT (8, 1) = oy'y® A (i) (o' ) w0, )
= iy AN (=) T, 1)) = 75" A%y da (@, 1)) (37)

»
37



Next we nse the following identities

19 = Py PP = iy = gy
Py = ity (38)

PAY -t (39)
which can be shown explicitly by using the definition of s, sn
and (most easily) by the following representation for 4*

g 0

So Eq.(A3) becomes

matrix

ap 0
ald, 1) = 7'7® A% ul, 1) = 3sy® Ay ysrpa(E 1) = ( ki
0 &
(41)

where we have used the following representation for the gamtma ma-
trices a5 a convenient set

0 7] 10
.,a=( ]( ] -
10 \ 0 =1,
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Therefore the terms 1]vy and ¥y, are Lorents invariant under

the proper homogeneous Lorentz group transformations because sy,

and sp match in the following form slsg = I and ahs; = I. The

result is valid for any representation of gamma matrices because

different representations of gamma matrices are related by unitary

transformations, The terms vy and gy, are also invariant under

translations because the exponential factors in the field expanston of

both ¢ and i contain (he same space-time dependences, A similise

conclusion is valid for parity

P2 (8,0 = TPy, =) = T ("5 <2, =) = dy" " 500 (=2 2) = T { <t <) = 3 (=4
(48)

S0

P ]y (0 (B0, €) w0 (=, 009 gy (=, 1) = 40 (0 ) (2, 1)

(#4)

This is also the case for tha charge conjugation

s (2, 8) = T {OUG(E, =) = T (008, =) = =o' YN (1) = iy TURHE =) = =Ryi(e
(45)

while oy teansforms as € @ oy (#,8) = (00, 1) o

C 5 ] oy 0y () W = =y (B 0270 (1) o B = Wy (O N G200 o e

= W] g (F, )01y () o+ Me -
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