Alpha Magnetic Spectrometer **The AMS Microstrips Silicon Tracker** A Particle Physics Experiment on the International Space Station

Divic Rapin DPNC, University of Geneva AMS Tracker Collaboration

S

AMS is a particle physics experiment in space Measurement of Q, p, v and dE/dx of cosmics

- Qualification test flight in 1998 with Space Shuttle
- Installation on ISS scheduled for 2004
- Space operations constraints:
 - Radiation, extreme accelerations and temperature variations
 - Maximum weight ${\sim}2$ t and power ${\sim}2$ kW
 - Reliability for 3 years of operation

- Resolution: 10μ m bending, 30μ m non-bending plane
- Large dynamic range for dE/dx: 1 to 100 MIP
- AMS01: 2 m², 6 layers, 60k channels (57 *ladders*)
- AMS02: 7 m², 8 layers, 200k channels (192 *ladders*)
- Ladders mounted on AI+C honeycomb support plane
 - ladder and support: $X_0 = 0.65\%$ per plane
- Planes supported by a Carbon fiber structure
- Heat evacuated by TPG inserts, k=1700 W/deg m

- Wafers organised in long *ladders* (7 to 15 per ladder)
- Ladder rigidity provided by sandwich of AIREX foam (5 mm) and carbon fiber surface (0.1 mm)
- Thin EMI shielding wrapped around each ladder

- Double sided Silicon sensors: $40 \times 72 \times 0.3$ mm³
- \bullet Biasing (50 and 100 V) with punch-through and p^+ blocking strips on n-side
- Capacitive coupling with implantation strip pitches of:
 - for p-side: 27.5μ m, (110 for readout), 640 channels
 - for n-side: 26.0μ m, (208 for readout), 2 × 192 channels
- Connections between the wafers and to the front-end electronics with wire bonds and thin (50μ m) flat flexible UPILEX (kapton) micro-circuits

- Front-end electronics based on VA-hdr chip (preamp + memory)
- DSP processors for Tracker Data Reduction (TDR)

AMS Tracker Plane during Metrology

STS91 flight: June 2-12, 1998

- AMS was secondary payload for test and qualification
- No failure, complete success
- 90 hours of dedicated data taking after MIR undocking
- Test beams at CERN (p) and at GSI (ions)
- Physics results at this conference (V. Choutko)

Tracker behaviour with temperature:

Position resolution: 10μ m. Magnet: $BL^2 = 0.14$ Tm²

AMS significantly upgraded

Next flight (for ISS) scheduled for early 2004

Tracker improved keeping the same concept:

- Full acceptance coverage (from 2 to 7 m², 192 ladders)
- 8 layers instead of 6 for better redundancy
- Better electronics and cooling
- Slight modifications of n-side strips, passivation of Si.

