Observation of Anomalous Dimuon Events in the NuTeV Decay Detector

Michael Shaevitz Fermilab and Columbia University for the NuTeV Collaboration

- Introduction to NuTeV "Decay Channel" search and events
- Search criteria and "Conventional Physics" backgrounds
- · Monte Carlo checks
- The Observed Events with an "Exotic Decay" and "Null" hypothesis
- Conclusions (Preliminary)

NuTeV Collaboration

T. Adams⁴, A. Alton⁴, S. Avvakumov⁷, L. de Barbaro⁵, P. de Barbaro⁷, R.H. Bernstein³, A. Bodek⁷, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁷, L. Bugel³, J. Conrad², R.B. Drucker⁶, B.T. Fleming², J.A. Formaggio², R. Frey⁶, J. Goldman⁴, M. Goncharov⁴, D.A. Harris³, R.A. Johnson¹, J.H. Kim², S. Koutsoliotas⁹, M.J. Lamm³, W. Marsh³, D. Mason⁶, J. McDonald⁸, K.S. McFarland⁷, C. McNulty², D. Naples⁸, P. Nienaber³, A. Romosan², W.K. Sakumoto⁷, H. Schellman⁵, M.H. Shaevitz², P. Spentzouris³, E.G. Stern², N. Suwonjandee¹, M. Vakili¹, A. Vaitaitis², U.K. Yang⁷, J. Yu³, G.P. Zeiler⁵ and E.D. Zimmerman²

¹University of Cincinnati, Cincinnati, OH 45221

²Columbia University, New York, NY 10027

³Fermi National Accelerator Laboratory, Batavia, IL 60510

⁴Kansas State University, Manhattan, KS 66506

⁵Northwestern University, Evanston, IL 60208

⁶University of Oregon, Eugene, OR 97403

⁷University of Rochester, Rochester, NY 14627

⁸University of Pittsburgh, Pittsburgh, PA 15260

⁹Bucknell University, Lewisburg, PA 17837

Key for the Decay Channel Analysis Group

- Graduate Students
- Members of the analysis group
- · Members focusing mainly on this analysis

NuTeV Neutrino Experiment

- Tevatron 800 GeV primary proton $\rightarrow \pi$ and K meson (Sign-selected Quad Triplet SSQT beam)
 - $\rightarrow v_{\mu}$ and \overline{v}_{μ}
- 1996-97 Data Run
- ~4.5 million v and v interactions (6:1 ratio)

NuTeV Decay Detector Search for No's

Search for few-GeV, long-lived neutral particles (N°s)
that decay into two charged tracks (μμν, μεν, μπ)

Examples:

- Neutral Heavy Leptons (NHLs)
 - Isosinglet ("sterile") heavy neutrinos that are produced and decay through mixing

- Neutralinos
 - Long-lived neutralinos which decay through
 R-parity violation (γcτ ~ 500 5000m)

5

NuTeV Decay Detector ("Decay Channel")

- Veto Wall to veto entering charged particles
- Helium bags reduce v interactions relative to air
- Drift Chambers for tracking
- Lab E Neutrino Detector provides:
 - particle identification
 - energy measurements for e, π, K etc.
 - μ momentum measured in spectrometer

Neutrino Interactions in the Decay Channel

- Expect ~2500 v interactions events in chambers and surrounding material and ~115 v events in Helium
 - v events in He with only two reconstructed tracks (others exit) is main background to search
- v interaction Monte Carlo:
 - Includes quasi-elastic, resonance, and DIS
 - A-dependence included (Eskola et al., Eur. Phys J. C9 (1999) 61)
 - Use Lepto/Jetset for quark fragmentation checked against EMC, BEBC, CCFR, and NuTeV data
 - Interface to hit-level GEANT Monte Carlo with chamber and counter noise added from data
 - Put through same full reconstruction as data
 - Normalized to data with ≥ 2 tracks with toroid μ
- Vertex Distribution for events with ≥ 2 tracks
 - Good agreement of data to MC (χ²/DOF = 53.7/64)

Nº Search Criteria (Cuts)

Criteria developed to isolate two track events with good reconstruction in Helium region

⇒ Use Background and signal Monte Carlo to develop cuts

A candidate data event was seen by the group early in the analysis but the details of the event were not used in developing the cuts.

Main requirements:

- Good Track and Vertex reconstruction
 ("χ²_{track} "/dof < 10, xy link, and "χ²_{vertex} "/dof < 10)
- Require 2-track vertex and no veto
 (Only 2 tracks at vertex plus possible downstream δ-track)
- Energy Requirements and Good Particle Identification $(E_u > 2.2 \text{ GeV})$, $E_{\pi \text{ or e}} > 10 \text{ GeV}$, $\Sigma E_{\text{tracks}} > 12 \text{ GeV}$
- Isolate fiducial volume
 (Vertex with |x| < 50 in and |y| < 50 in)
 (z of vertex 40 inches or 3σ away from chambers)
- * Isolate high mass region $(M_T = |p_T^{miss}| + (p_T^{miss})^2 + m_{inv}^2)^{1/2} > 2.2 \text{ GeV})$ Previous limits for $M_T < 2.2 \text{ GeV}$ (A. Vaitaitis *et al.*, Phys. Rev. Lett. 83 (1999) 4943; J.A. Formaggio *et al.*, Phys. Rev. Lett. 84 (2000) 4043)
- Clean Cuts to remove DIS events with exiting tracks and neutrals
 (No extra neutral clusters in the calorimeter, ≤ 4 hits in each view downstream of vertex, ≤ 7 hits total in 2 chambers downstream in any one view)

Background Sources

- v events in the Helium
 - Low-multiplicity or many tracks that exit giving 2 tracks
- v events in the chambers and other material
 - Mass is 20× helium
 - Mis-reconstructed vertex that appears to be in helium region and only 2 tracks
- Diffractive and Trident v interactions in He/chambers
 - Measured by NuTeV D,D_s,ρ,ω,φ,ψ,π,K etc.
 See Adams et al., PRD 61 (2000) 92001
- Wide angle K_L from interactions in berm, floor, etc.
 - Can give low m_{INV} (< 0.5 GeV) μπ decays
 - Reduced by ΣE_{tracks} > 12 GeV
- Other negligible types
 - Cosmic rays, berm photon conversions, berm μ punch-thru, two-event overlays, etc.
 - ⇒ All constrained by data

Summary of the Sources of Background

Source	μμ Events
DIS Events, all sources	$(3.9 \pm 0.9) \times 10^{-2}$
Diffractive Charm	$(1.1 \pm 0.1) \times 10^{-3}$
Diffractive $\mu\pi$	$(1.7 \pm 0.1) \times 10^{-4}$
K_L decays from berm	$(3.9 \pm 3.9) \times 10^{-4}$
Diffractive μK	$(3.3 \pm 0.3) \times 10^{-7}$
Other Sources	$< 2.5 \times 10^{-4}$
Total $\mu\mu$ Background:	0.040 ± 0.009 events

Source	μe Events
DIS Events, all sources	$(1.4 \pm 0.2) \times 10^{-1}$
Diffractive Charm	$(1.5 \pm 0.1) \times 10^{-3}$
Diffractive $\mu\pi$	$(1.0 \pm 0.1) \times 10^{-4}$
K_L decays from berm	$(3.9 \pm 3.9) \times 10^{-4}$
Diffractive μK	$(2.5 \pm 0.2) \times 10^{-7}$
Other Sources	$< 1.6 \times 10^{-4}$
Total µe Background:	0.14 ± 0.02 events

Source	μπ Events
DIS Events, all sources	$(1.3 \pm 0.2) \times 10^{-1}$
Diffractive Charm	$(1.1 \pm 0.1) \times 10^{-3}$
Diffractive $\mu\pi$	$(3.5 \pm 0.3) \times 10^{-4}$
K_L decays from berm	$(3.9 \pm 3.9) \times 10^{-4}$
Diffractive μK	$(8.7 \pm 0.8) \times 10^{-7}$
Other Sources	$< 1.6 \times 10^{-4}$
Total $\mu\pi$ Background:	0.13 ± 0.02 events

Errors are Systematics ⊗ Monte Carlo Statistics.

"Other" Box Checks of Monte Carlo

The "chamber antibox" (within ±6 in of chamber)

Type	Observed	MC
μμ	0	1.6
μе	1	1.8
μπ	2	2.7

$\times 1/28$	to He
(mass/a	accept.
Carrier A	

Predict He Interactions
< 0.04
~0.04
~0.07

Intermediate region (6 to 40 in from chambers)

Type	Observed	MC
μμ	0	0.1 ± 0.05
μe	0	0.6 ± 0.1
μπ	0	0.7 ± 0.2

- · Other studies:
 - Reduced cuts "chamber antibox" for $\mu\pi$
 - $-\pi\pi$ all and > 40in from chambers
 - Multitrack events with > 2 tracks at vertex

Agreement in all studies to ± 15%

Inside Signal Region ...

Conclusions:

- We observe 3 μ μ events, 0 μ π and 0 μ e
- The three events are far above expectation (gray region)
- The MC background expectation has been checked several ways

Cut Reduction Studies

Start with full cuts and remove cuts sequentially

Remove "Clean Cuts"

Event Type	Data Events	MC Predict
μμ	3 + 1	0.25
це	0	0.25
μπ	0	0.13

Expand fiducial region to include chambers

Event Type	Data Events	MC Predict
μμ	3 + 2	1.4
це	7	6.3
μπ	5	5.5

Remove all energy and PID cuts

Event Type	Data Events	MC Predict
μμ	3+3	2.5
ие	10	13.8
μπ	10	13.8

- Transverse Mass: 5.1 GeV
- Track information:

Momentum Pseudo- $\chi^2/\text{DOF}(x;y)$ Charge Track 1: 77.7 GeV 0.2/2; 2.4/2 negative Track 2: 2.6 GeV 0.3/2; 3.1/2 unmeasured

- Vertex Information: (x, y, z) in inches $\Delta_z^{chamber}$ Pseudo- χ^2 /DOF error in z (-18.4, 1.4, -1265.9) 77 inches (DK4) 6.3/9 (Prob=62%) ± 9.5 inches
- Veto hit-time from trigger: +404, +536 ns

Event 2

- Transverse Mass: 3.1 GeV
- Track information:

Momentum Pseudo- χ^2 /DOF Charge Track 1: 92.0 GeV 1.8/4; 2.8/4 negative Track 2: 5.8 GeV 5.1/4; 4.5/4 unmeasured

• Vertex Information: (x, y, z) in inches $\Delta_z^{chamber}$ (18.3, -15.2, -2041.2) 312 inches (DK5) 260 inches (TB)

Pseudo- χ^2/DOF error in z 166/17 (Prob=5%) ± 7.2 inches

• Veto hit-time from trigger: +24 ns 6.3 σ out of time

Event 3

- Transverse Mass: 4.7 GeV
- Track information:

TO DESIGNATION OF THE PARTY OF	Momentum	Pseudo- $\chi^2/\text{DOF}(x,y)$	Charge
Track 1:	47.9 GeV	2.5/2; 0.8/2	unmeasured
Track 2:	4.3 GeV	13/2; 2.4/2	unmeasured
Downstream Track:	unmeasured ($< 2GeV$)	0.8/2; 1.2/2	unmeasured

Extra track

- Vertex Information: (x, y, z) in inches $\Delta_z^{chamber}$ Pseudo- χ^2 /DOF error in z (-23.3, 5.8, -1416.7) 73 inches (DK4) 23/10 (Prob=21%) \pm 5.3 inches
- Veto hit-time from trigger: -256, +320, +320, +1192 ns

- What's <u>right</u> about a N⁰-decay explanation?
 - Events pass the analysis cuts ⇒ Background is 0.04 evts!
 - Events distributed in z
 and away from chambers
 ⇒ Look like decays
 - Reasonable values of M_T,
 M_{inv}, missing p_T for 5
 GeV N⁰

- All the events are highly asymmetric in muon energy
- Probability for 3 events

"Null Hypotheses"

Based on Neutrino Interactions in the Decay Channel

Why? E_{μ} asymmetry of two μ 's, event kinematics, and leading muon charge consistent with neutrino scattering

⇒ Challenge: Only see "clean" μμ events in the Helium (If interactions, then should be chamber events)

But all of these background hypotheses should already be included in Monte Carlo background estimate.

- · Hypothesis 1: Misreconstructed chamber events
 - Constrained fits to chambers give much bigger χ²/dof
 - Where are misreconstructed $\mu\pi$ and μe ?
- Hypothesis 2: Excess $\mu\pi \to \mu\mu\nu$ events in chamber or He
 - Only 7% of pions decay so should see un-decayed μπ events
 ⇒ Predict 3 × (μπ/μμ) = 9.8 events but see 0 μπ
- Hypothesis 3: Excess μK → μμν events in chamber or He
 - p_T from K-decay can push chamber events into He
 - Only 22% of kaons decay and only 43% will form a downstream vertex so should see many μK events
 ⇒ Predict 38.5 μ "hadron" events but see 10

NHL and Neutralino Limits

NHL Hypothesis:

- For 5 GeV NHL
 μμν:μεν:μπ =
 1:1.7:0.1
 Then given 3 μμ
 events, expect 5 μe
 but 0 observed
- Similar limit to Delphi 90% CL

Neutralino Hypothesis:

- N⁰ could be a longlived, R-parity violating χ⁰
- Can choose couplings to only give μμν decays
- First limit on longlived χ⁰ in this mass range

Conclusions (Preliminary)

 NuTeV has performed a search for the decay of an exotic N⁰ particle with M_T > 2.2 GeV

Event Type	Data Events	Backgnd (Prelim.)
μμ	3	0.040 ± 0.009
μe	0	0.14 ± 0.02
μπ	0	0.13 ± 0.02

- Prob(≥ 3 μμ events) = 1.2 × 10⁻⁵
 Prob(All modes with ≥ 3 events) = 4.1 × 10⁻³
- Only see clean two-track events in He region not chambers which are 20 times more massive
 - Looks like a decay not an interaction
- Energy asymmetry is > 0.85 in all three cases
 - Probability is < 0.5% for an No (~ 35% for DIS)
- Various DIS-inspired "Null-hypotheses" have been investigated but all have low probability for explaining these events.
- · New limits set on NHLs and Neutralinos

Parameters for search: 2.54×10^{18} p.o.t. at 7.8 mr Detector 1.4 km away with $2.5m \times 2.5m \times 35m$ fid. vol. E * Neutrino flux into fid. vol. = 1.9×10^4 / p.o.t.

Summary of Energy and Mass Measurements for Events

Event	$E_{\mu 1}$ (GeV)	$E_{\mu 2}$ (GeV)	P _{T miss} (GeV)	Mine (GeV)	M_T (GeV)
5835/81705	77.7 ± 8.6	2.56 ± 0.31	2.42 ± 0.27	1.11 ± 0.07	5.08 ± 0.05
6113/3846	92.0 ± 10.12	5.84 ± 0.31	1.42 ± 0.17	0.89 ± 0.04	3.08 ± 0.34
6013/219863	48.0 ± 20.15	4.34 ± 0.31	2.07 ± 0.90	1.57 ± 0.30	4.67 ± 1.78

Summary of Vertex Measurements for Events

(position units are inches)

Event	x Vertex	y Vertex	z Vertex	Pseudo- χ^2/DOF	Prob
5835/81705	-18.44±0.18	1.41±0.28	-1265.9±9.5	6.3/9	62%
6133/3846	18.31±0.04	-15.25±0.12	-2041.2±7.2	166/17	5%
6013/219863	-23.25±0.18	5.83±0.24	-1416.7±5.3	23/10	21%