# Particle Searches at a Linear Collider

29/07/2000 ICHEP2000, Osaka, Japan

Klaus Desch University of Hamburg

- Framework
- Higgs
- Supersymmetry
- Alternative Theories
- Summary & Conclusions

# Framework

- Technical feasibility of linear  $e^+e^-$ -colliders in the 500-1000 GeV regime intensively studied in the past years (+ study of multi-TeV machine, CLIC)
- Detailed designs (JLC,NLC,TESLA) exist and are very promising
- First phase: 500 GeV Linear Collider could operate few years after LHC start
- Physics case for such machines is seriously studied in several workshops:

Regional Studies Worldwide Study

ECFA/DESY Sitges 04/99

ACFA Fermilab 10/00

US

Large participation from experiment and theory

### 'New Physics' Programme of a Linear Collider

- study Higgs boson properties (couplings, mass, spin, CP)
  - → fully establish the mechanism of EW symmetry breaking
- precisely measure the supersymmetric particle spectrum
  - → explore SUSY breaking mechanism
  - -> extrapolate from EW-scale to GUT-scale
- sensitivity to many alternative scenarios with large complementarity to LHC.

### Assumptions for Physics Studies

Machine: 
$$\sqrt{s} = 500 \dots 1000 \text{ GeV}$$

High Luminosity: 2-3  $\times$  10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> ightarrow several 100  $fb^{-1}$  / year



Polarisation of both beams:

$$P(e^{-}) = 80 \% P(e^{+}) = 60 \%$$

### **Assumptions for Physics Studies**

Detectors:

guided by LEP/SLD experience

+ technical progress (LHC-expts., ...)

Many detector goals guided by Higgs-physics:

- hermeticity ( $H \rightarrow$  invisible)
- excellent electromagnetic calorimeter ( $H 
  ightarrow \gamma \gamma$ )
- excellent momentum resolution ( $ZH \rightarrow \ell^+\ell^-X$ , recoil mass!)
- b/c-separation and τ-ID (Higgs branching ratios) small beamspot (500 × 5 nm) and small beampipe radius (1.x cm) allow for excellent flavour tags:



# Higgs Physics

Abstract 728, ECFA/DESY Higgs LC working group M.Battaglia, KD, A.Djouadi, E.Gross, B.Kniehl **Higgs Studies with TESLA** 



- several 10<sup>4</sup> Higgs bosons produced / year for "light" Higgs
- detection with high efficiency (see LEP)
- nearly background free

## Cross Section HZ, H u u

#### Higgs-Strahlung:



#### WW-Fusion: Missing Mass-Distribution in $uar{ u}bar{b}$ -Events



# **Higgs: Branching Ratios**

#### Simulation of the measurement of Higgs branching ratios:



– disentangle  $bar{b},car{c}$  and gg using simultaneous fit to lifetime-sensitive variables

| Decay                     | Precision | (for 500 $fb^{-1}$ ) |
|---------------------------|-----------|----------------------|
| $H 	o b ar{b}$            | 2.4 %     |                      |
| $H  ightarrow c ar{c}$    | 8.3 %     |                      |
| H 	o gg                   | 5.5 %     |                      |
| $H  ightarrow 	au^+	au^-$ | 6.0%      |                      |
| $H \to W^+W^-$            | 5.4%      |                      |
| $H 	o \gamma \gamma$      | 10-15%    |                      |

K. Dasch Particle Searches of a Linear Collider ICHEP2000 29/07/00

## Higgs selfcoupling and ttH coupling

Higgs Potential:  $V(\Phi) = \lambda (\Phi^\dagger \Phi - v^2/2)^2$ 

– accessible at LC through trilinear Higgs coupling  $\lambda_{HHH}$ 



#### – $\sigma < 0.1$ fb ightarrow accessible with very high luminosity

Signature:  $e^+e^- o ZHH o qar qbar bbar b$ 

After selection: S/B pprox 1/1, efficiency pprox 15%

$$ightarrow \Delta \lambda/\lambda pprox 20\%$$
 is possible with 500  $fb^{-1}$ .

#### Top Yukawa coupling:

Signature:

$$e^+e^- o tar tH o W^+bW^-ar bbar b o 4q4b, 2q\ell\nu 4b$$
  $o \Delta g_{ttH}/g_{ttH}pprox 6\%$  is possible with 1000 fb $^{-1}$  at  $\sqrt s=800$  GeV.

## Mass, Width, Spin, CP

Higgs mass measurement:

Best from 5C-Fit in bar b qar q –events (if H o bar b is large)

Otherwise: use recoil mass spectrum

 $\Delta m_H \approx 50 \text{MeV}$ 



Total decay width: indirect from BR and cross section measurements:

 $\Delta\Gamma_H \approx 5\%$ 

Spin: from angular distributions and/or from  $\gamma\gamma o H$ 

CP, anomalous couplings: polar and azimuthal angular distributions (under study)

( Killan, Krämer, Zerwas (1995); Skjold, Osland (1995); Hagiwara, Ishihara, Kamoshita, Kniehl (1999)

#### Supersymmetry

Aim: Precise mass and cross section measurement of all kinematically accessible sparticles

- → explore SUSY breaking mechanism
- → unification at high energy?



Precision of mass measurements:  $\mathcal{O}(200 \text{MeV})$  from spectra  $\mathcal{O}(50 \text{MeV})$  from threshold scans Why is such precision needed?

### **Extrapolation to High Energies**

What can be learned from the measured parameters?

Bottom up approach:

Generate a set of physical observables from some (e.g. mSUGRA) scenario

Reconstruct the mass parameters at the EW scale (with errors)

Evolve those parameters to high scale through RGE's



### Anomaly Mediated Susy Breaking (AMSB)

#### Abstract 323

Signal of anomaly mediated Wino LSP in a LC D.K.Ghosh, P.Roy, S.Roy

Phenomenology: small  $\Delta M = m_{ ilde{\chi}_1^+} - m_{ ilde{\chi}_1^0}$  (o(100 MeV)) → chargino production difficult to access

If sleptons are kinematically accessible, they provide a striking signal:

$$e^+e^- \to \tilde{e}(\tilde{\mu})\bar{\tilde{e}}(\bar{\tilde{\mu}}) \to \nu\chi^+e(\mu)\chi^0$$
  
 $\to e(\mu) + (\mathrm{soft})\pi^{\pm} + \mathrm{miss.E_T}$ 

#### pion transverse momentum





# Alternative Theories (few examples)

#### 1. Extra space dimensions:

Motivated by superstrings + solve hierarchy problem Look for direct graviton production:



Even higher sensitivity (up to 9 TeV) can be obtained with beam polarisation (supress  $\nu\nu\gamma$ -background)

G.Wilson (2000)

# Alternative Theories (few examples)

#### 2. Leptoquark searches:

Abstract 451

A.F.Zarnecki

Leptoquark Searches at Future Colliders



- LHC has in general better sensitivity
- ullet LC has high sensitivity to couplings (in  $e\gamma$  mode, single LQ prod.)
- LC can study structure of coupling using polarisation of  $e ext{-}$  and  $\gamma$  beam.

## **Alternative Theories (few examples)**

#### 3. Rare $Z^0$ -decays, Lepton-Flavour-Violation at "Giga-Z" (TESLA):

Abstract 469

J.I.Illana, M.Jack, T.Riemann

Lepton Flavour Violation(LFV) in Z decays

Possibility to operate a LC at  $\sqrt{s}=m_Z$  with very high luminosity:  $10^9Z^0$  / year.  $\to$  allows to extend sensitivity of many searches e.g. search for LFV  $Z^0$ -decays:  $Z^0 \to \mu^{\pm}\tau^{\mp}$ 

#### LFV may arise from

- heavy neutrinos (Dirac or Majorana)
- Leptoquarks
- ullet Heavy neutral gauge bosons (Z')
- Supersymmetery
   (with slepton intergeneration mixing)



#### **Summary and Conclusions**

- An e<sup>+</sup>e<sup>-</sup>-Collider with 500...1000 GeV has a very rich program of new physics.
- In many cases complementary to LHC:
- -> precise exploration of Higgs boson properties -> establish essential elements of the Higgs mechanism
- -> very precise measurement of SUSY spectrum (extrapolate to GUT scale)
- -> valuable information also in alternative scenarios
- Studies have been performed on a very detailed (theory + expt.) level all around the world.

LC is the right machine shortly after the LHC start.

LC gives a complete and precise picture of physics at the EW-scale and allows a glance to even higher scales through extrapolation of precision measurements