

Juan José Hernández IFIC, Valencia, Spain

On behalf of the **ANTARES Collaboration** 

ICHEP 2000, July-August 2000, Osaka, Japan

**ANTARES** 

### **ANTARES** Collaboration





- University of Bari
- \* University of Bologna
- University of Catania
- \* LNS Catania
- \* University of Rome
- University of Genova



\* IFIC, Valencia



## **Motivations**

- High Energy Neutrino Astrophysics:
  - Galactic (SN bursts, young SN, SNR, microquasars)
  - Extragalactic (AGN, GRB)
- Cosmology:
  - WIMPS (neutralinos)
  - Topological defects
  - Monopoles, Q-balls, strangelets...
- \* Neutrino properties:
  - *n* oscillations
- \* Other studies:
  - Oceanology
  - Earth Tomography
- Unexpected phenomena







## **Antares** evolution

- 1996 Creation of the ANTARES Collaboration.
- Oct 1996–1999: Site exploration (more than 30 deployments):
  - Optical water properties
  - Biofouling and sedimentation
  - Optical backgrounds (bioluminescence and <sup>40</sup>K)
- 1996–1999 0.1 km<sup>2</sup> design, R&D.
- \* **1998–1999** Special tests :
  - Test of mechanics and deployment techniques.
  - Tests of submarine connection.

- May 1999: Proposal of a 0.1 km<sup>2</sup> detector.
- Nov. 1999: A demonstrator string. Test of:
  - Full-size string deployment
  - Mechanical issues
  - Positioning systems
  - EO cable, data transmission, reconstruction, etc.
- 2000: Start of final design and construction phase.
- ✤ 2001: Deployment of a first string.
- ✤ 2002: First six strings deployed.
- ✤ 2003: 0.1 km<sup>2</sup> string detector in place.



- \* 3.5 $\pi$  sr of the sky is covered
- \*  $0.5\pi$  sr overlap with Amanda
- Galactic Centre surveyed



0.9

#### **Environmental measurements**

#### **Optical background**



Short bursts (bioluminescence) over a continuous background ( $^{40}$ K). ~ 40 kHz (8" PM) + < 5% deadtime

No major drawbacks

Good optical properties

#### **Efficiency loss**

On lower hemisphere, efficiency loss is smaller than <1.5% after 8 months.

#### Water transparency





## The 0.1 km<sup>2</sup> detector (a view)



## **Expected performances**



Including effects of reconstruction and selection, PMT TTS, positioning, timing calibration accuracy and scattering.

Below ~10 TeV angular error is dominated by n-mphysical angle.

✤ Above ~10 TeV angular accuracy is better than 0.4° (reconstruction error).



$$\bigstar \ \sigma_{\rm E}/E \approx 3 \ (E > 1 \text{ TeV})$$

✤ Below E ~ 100 GeV, energy estimation via muon range.

# **A demonstrator string**

- ♦ A full-scale line (340 m): test of mechanics and deployment.
- Partially instrumented: 7 PMTs, CTDs, tiltmeters, positioning system, Slow Controls, etc.
- \* Read-out via electro-optical cable.
- Operational since December 1999 (retrieved last month).









#### **Compass and tiltmeters**

- ✤ Taut string at ~2.3° from vertical.
- Tilt stability: ~0.2° over one week (x and y).
- ✤ Heading stability: 2° over one week.



**Top view** 

Negligible twist

Tilt x (°) Top tiltmeter -0.1 -0.2 -0.3 -0.40 500 1000 1500 2000

 $\times 100 \text{ sec}$ 

# **Acoustic positioning**





#### 4 transponders 3 rangemeters +Sound velocimeter

| Devices           | Accuracy (σ) |
|-------------------|--------------|
| Inter-rangemeter  | ~ 1 cm       |
| Inter-transponder | ~ 1 cm       |
| RangTranspond.    | ≤ 6 cm       |

Triangulation allows ~5 cm accuracy



# **Atmospheric muons**

- More than  $5 \times 10^4$  coincidences in all 7 PMTs have been recorded.
- Polar angle of down-going muons deduced from depth vs. time pattern.
- Hyperbolic fit (including multimuons).
- ${}^{40}$ K filtered out by the reconstruction software (see boxed hit in example).



#### **Demonstrator results**





 Angular distribution agrees with expectations from single + multimuons.

Around 1100/day down-going  $\mu$ 's reconstructed (in agreement with MC).



- ANTARES has successfully performed its planned R&D programme:
  - Site exploration (environmental parameters)
  - Design of a 0.1 km<sup>2</sup> detector
  - Detailed tests of its components
  - Verification of undersea connection procedure
  - Deployment of a demonstrator string
- ✤ First string will be deployed in summer 2001.
- A  $0.1 \text{ km}^2$  detector (13 strings) will be deployed by the end of 2003.
- Operation of such a detector will be a thorough test-bench for a 1 km<sup>3</sup> neutrino telescope in the Mediterranean Sea.