

Leptonic decays of the D_s meson 中に

- What do we measure?
 Why?
 How?
- Results
- ALEPH

NEW (ABS 172)

- DELPHI ('97, Jerusalem)
- ('96, published)

<u>-</u>

Summary

What do we measure

Annihilation diagram Cabibbo allowed

decay accessible heavy meson Easiest experimentally

Extract decay constant fos

Standard Model predicts:

$$BR(D_s \to Iv) = \frac{G_F^2}{8\pi} \tau_{D_s} f_{D_s}^2 IV_{cs} I^2 m_{D_s} m_1^2 \left[1 - \frac{m_1^2}{m_{D_s}^2}\right]$$

For fb = 260 MeV

BR(D_s
$$\to \tau v$$
) = 5.2%
BR(D_s $\to \mu v$) = 0.54%
BR(D_s $\to e v$) = 1.3×10⁻⁷

$$R(D_c \rightarrow ev) = 1.3 \times 10^{-1}$$

ICHEP 2000-Osaka

Why?

fos is calculated in a number of theoretical frameworks

- potential models f_{Ds} = 129 to 356 MeV
 QCD sum rules f_{Ds} = 231 ± 24 MeV
 Lattice QCD f_{Ds} = 240 +30 -25 MeV

Check validity of calculations

lattice QCD predicts f_B to constrain ρ and η in the CKM matrix In particular

f_B available No experimental values of

is very important to test lattice QCD The measured value of fo

How do we measure

4M Z hadronic decays from '91 to '95 Look for Z→cc→ D_s X with:

D₅→ 70

D_s→ µv

evv or mvv

 search for hemispheres with large momentum e or µ and missing energy

- In cc events all charged tracks, but the lepton, come from I.P.
- * Small, irreducible bkg form D+ → Iv treated like signal taking into account f_{bs}/f_{b+} = 1.11+0.06-0.05

ICHEP 2000-Osaka

Signal - Background separation

1	4 0	چ	4 0	چ
Nonte	-			Signa
Carlo		0000		8
o dist		0000		
nibut	4 0	ج د		چ
rions		₹ -	0.0000	# # # # # # # # # # # # # # # # # # #
100		:: [] 8. =	* * * * * * * * * * * * * * * * * * * *	Z - uds
[→eV]				0 0
ر د		<u></u>		

Get the maximum separation between signal and bkg by using Linear Discriminant Variables technique:

Find the best linear combination between a number of variables (mainly fitted P_{bs}, angle between P_l and P_{hem}, btag neural net, P, of lepton w.r.t. jet)

and build

U_b to separate signal from bb bkg
U_c to separate signal from cc bkg

ICHEP 2000-Osaka

Signal - Background separation

For D_s→ TV

Perform 'one constraint' kinematics fit to get E_{Ds}

- Remove lepton
- Impose M_{miss} = M_{Ds}

For D_s→ µv

Perform '2 constraint' kinematics fit

- Impose M_{miss} = 0
- Missing P // plan defined by I.P and Pµ

ICHEP 2000-Osaka

2D Fit for Ds→TV

Build the total fit function by parametrizing the 2D distributions for all the components:

- * signal in cc and bb (contributions from both D, and D' in e and u chan)
- bb, cē and uds bkg
- Relative normalization given by
- the charm hadron production rate
- theoretical TV/µV ratio
- lattice QCD fbs/fb. = 1.11+0.06-0.05
- Unbinned likelihood 2D fit in number
 of events for each component

	0	F
Data	3956	6637
Signal	306 ± 62	575 ± 84
uds bkg	111 ± 56	455 ± 139
cc bkg	2310 ± 101	3750 ± 182
bb bkg	1228 ± 56	1857 ± 74
20		

BR(D_s→τv)(e) = (5.86±1.18)% stat with C.L.=83%

BR(D_s→τv)(μ) = (5.78±0.85)%)

with C.L.=81%

2D Fit for Ds→TV

Projecting the fit in each variable Contribution from fitted signal

Same distributions after subtracting the fitted bkg

ICHEP 2000-Osaka

lultidimensional Fit for D_s→µv

3D binned fit in the space (Uc, Ub, Min)

Extract the total number of signal events

bb bkg	cc bkg	uds bkg	Signal
1291 ± 62	1251 ± 71	166 ± 47	553 ± 93

BR(D_s→µv) = (0.68±0.11)% stat C.L.=69%

ICHEP 2000-Osaka

Main Systematics

Total	Det	c fr	Cha	Source
al	Detector resolution	c fragmentation	Charm hadron prod	rce
35.7	13.6	16.7	25.4	D _s →tv(e) %
30.3	12.7	14.8	21.4	D _s →τν(e) D _s →τν(μ) %
26.0	4.0	12.1	19.6	D _s →μν %

Main uncertainty: 21% on f(c→D_s)

ICHEP 2000-Osaka

Aleph Summary

$$BR(D_s \rightarrow \tau v) = (5.86 \pm 1.18 \pm 2.09)\%$$

$$BR(D_s \rightarrow \mu\nu) = (0.68 \pm 0.11 \pm 0.18)\%$$

Combined f_{Ds} = (285±20±40) MeV

DELPHI, L3

- Different strategy: look for D_s* → D_sy, D_s→ tv requiring a combination of photon, lepton and and cut on M(D_sY)-M(D_s) missing energy in the same hemisphere
- No separation between electron and muon channel
- bb bkg rejection with lifetime based method
- Number of signal events given by the total candidates in a given mass window - bkg expected from MC for the same number of Z hadronic decays.

Delphi-data '94-'95

L3 -data '94

BR(D_s $\rightarrow \tau \nu$)= (8.5±4.2±2.6)%

(7.4±2.8±1.6±1.8)%

ICHEP 2000-Osaka

Conclusions

Aleph new analysis gives

consistent $D_s \to \tau v$ signals in evv and $\mu v v$ the combined BR($D_s \to \tau v$) is the world's most accurate first observation at LEP of $D_s \to \mu v$ leads to a

consistent value of f_{bs}

Lattice QCD → f_{bs} = 240 + 30 - 25 MeV

fos (MeV)

BEATRICE DELPHI CLEO E653 5 309±58±50 280±17±42 323±44±36 285±20±40 194±35±24 330±95

ICHEP 2000-Osaka

ALEPH 2000-062
CONF 2000-041
ICHEP2000
Abstract #172
Parallel session: PA-07
Plenary session: PL-03

17 July 2000

Leptonic decays of the D_s meson

The ALEPH Collaboration

Abstract

The purely leptonic decays $D_s \to \tau \nu$ and $D_s \to \mu \nu$ are studied in a sample of four million hadronic Z decays collected with the ALEPH detector at the LEP e⁺e⁻ collider. The branching fractions are extracted from a combination of two analyses, one optimized to select $D_s \to \tau \nu$ decays with $\tau \to e \nu \bar{\nu}$ or $\mu \nu \bar{\nu}$, and the other optimized for $D_s \to \mu \nu$ decays. The results are used to evaluate the D_s decay constant, within the Standard Model: $f_{D_s} = [285 \pm 20 (\text{stat}) \pm 40 (\text{syst})] \,\text{MeV}$.

Contributed paper to ICHEP2000
Contact person: Steve Wasserbaech (Steven, Wasserbaech@cern.ch)