Constraints on γ and Strong Phases from $B \to \pi K$ Decays

Robert Fleischer

DESY Hamburg, Theory Group

ICHEP 2000, Osaka, 27 July - 2 August, 2000

- Introduction
- Probing γ with $B \to \pi K$ Decays:

- "mixed": $B^{\pm} \rightarrow \pi^{\pm} K$, $B_d \rightarrow \pi^{\mp} K^{\pm}$

- charged: $B^\pm \to \pi^\pm K$, $B^\pm \to \pi^0 K^\pm$

- neutral: $B_d o \pi^0 K$, $B_d o \pi^\mp K^\pm$.

- Constraints on Strong Phases
- Conclusions and Outlook

[A. Buras & R.F., hep-ph/0003323, to appear in Eur. Phys. J. C]

Introduction

• To obtain direct information on γ in an experimentally feasible way, $B \to \pi K$ decays appear very promising:

- Experimental history:
 - CLEO '97-'00: CP-averaged (BR)s = $\mathcal{O}(10^{-5})$.
 - CLEO '99: first preliminary results on CP asymmetries.
 - Experimental uncertainties are still very large ...

Mode	$\langle BR \rangle / 10^{-6}$	$\mathcal{A}_{\mathrm{CP}}/10^{-2}$
$B_d \to \pi^{\mp} K^{\pm}$	$17.2^{+2.5}_{-2.4} \pm 1.2$	0.04 ± 0.16
$B^{\pm} \to \pi^0 K^{\pm}$	$11.6^{+3.0+1.4}_{-2.7-1.3}$	0.29 ± 0.23
$B^{\pm} \to \pi^{\pm} K$	$18.2^{+4.6}_{-4.0} \pm 1.6$	-0.18 ± 0.24
$B_d o \pi^0 K$	$14.6^{+5.9+2.4}_{-5.1-3.3}$?

[CLEO Collaboration, hep-ex/0001009 and hep-ex/0001010]

Japanese conventions

p.

· Pa

- $B o \pi K$ decays are governed by QCD penguins:
 - Example:

$$B_d^0 o \pi^- K^+$$

- $|V_{us}V_{ub}^*/(V_{ts}V_{tb}^*)| \approx 0.02$ \Rightarrow penguins dominate!
- The role of EW penguins (large top-quark mass!):
 - $B_d^0 \rightarrow \pi^- K^+$, $B^+ \rightarrow \pi^+ K^0$:

contribute in colour-suppressed form and are expected to play a minor role: "factorization" $\to \mathcal{O}(1\%)$.

- $B^+ \to \pi^0 K^+$, $B_d^0 \to \pi^0 K^0$:

contribute also in colour-allowed form and may compete with tree-diagram-like topologies!

Important SU(2) isospin relation:

$$\sqrt{2}A(B^{+} \to \pi^{0}K^{+}) + A(B^{+} \to \pi^{+}K^{0})$$

$$= \sqrt{2}A(B_{d}^{0} \to \pi^{0}K^{0}) + A(B_{d}^{0} \to \pi^{-}K^{+})$$

$$= -[(T+C) + P_{\text{ew}}] \times \left[e^{i\gamma} + q_{\text{ew}}\right].$$

- Amplitude relation with analogous phase structure also for the "mixed" $B^+ \to \pi^+ K^0$, $B^0_d \to \pi^- K^+$ system.
- Combinations of $B \to \pi K$ decays to probe γ :
 - $B^{\pm} \to \pi^{\pm} K$, $B_d \to \pi^{\mp} K^{\pm}$ ("mixed")

 [R.F. ('95); R.F. & Mannel ('97); Gronau & Rosner ('98)]
 - $B^{\pm} \rightarrow \pi^{\pm} K$, $B^{\pm} \rightarrow \pi^0 K^{\pm}$ ("charged")

 [Gronau, Rosner, London ('94); Neubert, Rosner; Buras, R.F. ('98)]
 - $B_d o \pi^0 K$, $B_d o \pi^\mp K^\pm$ ("neutral")

 [Buras & R.F. ('98-'00)]
- Interestingly, already CP-averaged branching ratios may lead to highly non-trivial constraints on γ .

[R.F. and T. Mannel, Phys. Rev. D57 (1998) 2752; M. Neubert and J.L. Rosner, Phys. Lett. B441 (1998) 403]

Probing γ with $B \to \pi K$ Decays

The key quantities:

$$R \equiv \frac{{\rm BR}(B_d^0 \to \pi^- K^+) + {\rm BR}(\overline{B_d^0} \to \pi^+ K^-)}{{\rm BR}(B^+ \to \pi^+ K^0) + {\rm BR}(B^- \to \pi^- \overline{K^0})} = 0.95 \pm 0.28$$

$$R_{c} \equiv 2 \left[\frac{\text{BR}(B^{+} \to \pi^{0}K^{+}) + \text{BR}(B^{-} \to \pi^{0}K^{-})}{\text{BR}(B^{+} \to \pi^{+}K^{0}) + \text{BR}(B^{-} \to \pi^{-}\overline{K^{0}})} \right] = 1.27 \pm 0.47$$

$$R_{\rm B} \equiv \frac{1}{2} \left[\frac{{\rm BR}(B_d^0 \to \pi^- K^+) + {\rm BR}(\overline{B_d^0} \to \pi^+ K^-)}{{\rm BR}(B_d^0 \to \pi^0 K^0) + {\rm BR}(\overline{B_d^0} \to \pi^0 \overline{K^0})} \right] = {\bf 0.59 \pm 0.27}.$$

 Employing the <u>SU(2)</u> flavour symmetry and dynamical assumptions, concerning mainly the smallness of FSI:

$$R_{(\mathrm{c,n})} = R_{(\mathrm{c,n})} \left(\gamma, q_{(\mathrm{c,n})}, r_{(\mathrm{c,n})}, \delta_{(\mathrm{c,n})} \right).$$

- Here the following variables are involved:
 - q_(c,n): ratio of EW penguins to "trees".
 - $r_{(c,n)}$: ratio of "trees" to QCD penguins.
 - $\delta_{(c,n)}$: strong phase between "trees" and QCD penguins.

[A. Buras & R.F., Eur. Phys. J. C11 (1999) 93]

- ullet The $q_{(c,n)}$ can be fixed through theoretical arguments:
 - $B^{\pm} \to \pi^{\pm} K$, $B_d \to \pi^{\mp} K^{\pm}$: $q \approx 0$, as EW penguins contribute only in colour-suppressed form.
 - $B^{\pm} \to \pi^{\pm} K$, $B^{\pm} \to \pi^{0} K^{\pm}$: $q_{c} \approx 0.63$ can be fixed through the SU(3) flavour symmetry (no dynamics!). [M. Neubert and J. Rosner, *Phys. Lett.* **B441** (1998) 403]
 - $B_d \to \pi^0 K$, $B_d \to \pi^\mp K^\pm$: $q_{\rm n} \approx 0.63$ can also be fixed through the SU(3) flavour symmetry. [A. Buras & R.F., Eur. Phys. J. C11 (1999) 93]
- The $r_{(c,n)}$ can be fixed through experimental information:
 - $B^{\pm} \to \pi^{\pm} K$, $B_d \to \pi^{\mp} K^{\pm}$: $r \approx 0.18$ can be fixed using factorization, $(B_d \to \pi l \nu_l \text{ helps})$; $B_s \to \pi K$. [R.F. ('95); Gronau and Rosner ('98,'00)]
 - $B^{\pm} \to \pi^{\pm} K$, $B^{\pm} \to \pi^{0} K^{\pm}$; $r_{c} \approx 0.21$ can be fixed from the $B^{+} \to \pi^{+} \pi^{0}$ branching ratio by using the SU(3) flavour symmetry (no dynamics!). [Gronau, Rosner and London, Phys. Rev. Lett. 73 (1994) 21]
 - $B_d \rightarrow \pi^0 K$, $B_d \rightarrow \pi^\mp K^\pm$: $r_n \approx 0.17$ can also be fixed through SU(3) from $B^+ \rightarrow \pi^+ \pi^0$. [A. Buras & R.F., Eur. Phys. J. C11 (1999) 93]

Comments on FSI effects:

- Whereas the determination of q and r as sketched above may be affected by FSI effects, this is <u>not</u> the case for q_{c,n} and r_{c,n}, since here SU(3) suffices.
- Nevertheless, we have to assume that $B^+ \to \pi^+ K^0$ or $B_d \to \pi^0 K$ do <u>not</u> involve a CP-violating weak phase:

$$A(B^+ \to \pi^+ K^0) = -|\tilde{P}|e^{i\delta}\tilde{P} = A(B^- \to \pi^- \overline{K^0}).$$

- This relation may be affected by rescattering processes:

- Can be taken into account through additional input, e.g. SU(3) and data on B[±] → K[±]K. In the case of the neutral strategy, FSI effects can be included in an exact manner with the help of A^{mix}_{CP}(B_d → π⁰K_S).

Back to the Constraints on γ ...

Central quantity:

$$R_{(\mathbf{c},\mathbf{n})}\left(\gamma,q_{(\mathbf{c},\mathbf{n})},r_{(\mathbf{c},\mathbf{n})},\pmb{\delta}_{(\mathbf{c},\mathbf{n})}\right).$$

- ullet The strong phase $\delta_{(c,n)}$ suffers from large hadronic uncertainties and is essentially unknown!!
- However, we can get rid of $\delta_{(c,n)}$ by keeping it as a "free" variable, yielding minimal and maximal values for $R_{(c,n)}$:

$$\left.R_{(c,\mathbf{n})}^{\;\mathrm{ext}}\right|_{\delta_{(c,\mathbf{n})}} = \mathrm{complicated\;expression}\;\left({\color{gray}\boldsymbol{\gamma}},q_{(c,\mathbf{n})},r_{(c,\mathbf{n})}\right)$$

• Keeping in addition $r_{(c,n)}$ as a "free" variable, we obtain another – less restrictive – minimal value for $R_{(c,n)}$:

$$\left. R_{(c,\mathbf{n})}^{\,\mathrm{min}} \right|_{r_{(c,\mathbf{n})},\delta_{(c,\mathbf{n})}} = \kappa(\textcolor{red}{\gamma},q_{(c,\mathbf{n})}) \sin^2 \textcolor{red}{\gamma} \,.$$

• These extremal values of $R_{(c,n)}$ imply constraints on γ , as the following cases are excluded:

$$R_{(\mathrm{c},\mathrm{n})}^{\mathrm{exp}} < R_{(\mathrm{c},\mathrm{n})}^{\mathrm{min}}, \quad R_{(\mathrm{c},\mathrm{n})}^{\mathrm{exp}} > R_{(\mathrm{c},\mathrm{n})}^{\mathrm{max}}.$$

• The dependence of the extremal values of $R_{\rm n}$ (neutral $B \to \pi K$ system) on γ for $q_{\rm n} = 0.63$:

• The dependence of the extremal values of $R_{\rm c}$ (charged $B \to \pi K$ system) on γ for $q_{\rm c}=0.63$:

[A. Buras & R.F., hep-ph/0003323, to appear in Eur. Phys. J. C]

CLEO '00:

CLEO '00:

Ro=123 ± 0.47 87*

excluded !

r

• Constraints in the $\overline{\varrho}$ - $\overline{\eta}$ plane implied by $R_{\rm n}^{\rm min}|_{r_{\rm n},\delta_{\rm n}}$ for $R_{\rm n}=0.6$ and $q_{\rm n}=0.63\times[0.41/R_b]$:

• Constraints in the $\overline{\varrho}$ - $\overline{\eta}$ plane implied by $R_{\rm n}^{\rm ext}|_{\delta_{\rm n}}$ for $R_{\rm n}=0.6$, $r_{\rm n}=0.17$ and $q_{\rm n}=0.63\times[0.41/R_b]$:

[A. Buras & R.F., hep-ph/0003323, to appear in Eur. Phys. J. C]

-

1 74

allowed vonge
for a from
UT fits

A contact of the contact of the

Constraints on Strong Phases

 The observables R_(c,n) allow us to determine cos δ_(c,n) as a function of γ, thereby providing also constraints on these CP-conserving strong phases:

$$\cos \delta_{(c, \mathbf{n})} = \text{function} \left(\gamma, R_{(c, \mathbf{n})}, q_{(c, \mathbf{n})}, r_{(c, \mathbf{n})} \right).$$

- The CLEO data reported in January 2000 are in favour of cos δ_c > 0 and cos δ_n < 0.
- Such a pattern would be in conflict with the theoretical expectation of equal signs for $\cos \delta_c$ and $\cos \delta_n!$
- If future data should confirm this "puzzle", it may be an indication for one of the following features:
 - New-physics contributions to the EW penguin sector.
 - Large non-factorizable SU(3)-breaking effects, affecting the determination of the EW penguin parameters q_{c,n}.
- In order to distinguish between these possibilties, detailed studies of the various patterns of new-physics effects in all B → πK decays are essential, as well as critical analyses of possible sources for SU(3) breaking.

[A. Buras & R.F., hep-ph/0003323, to appear in Eur. Phys. J. C]

• Dependence of $\cos \delta_{\rm n}$ on γ for various values of $R_{\rm n}$ in the case of $q_{\rm n}=0.63$ and $r_{\rm n}=0.17$:

• Dependence of $\cos\delta_c$ on γ for various values of R_c in the case of $q_c=0.63$ and $r_c=0.21$:

[A. Buras & R.F., hep-ph/0003323, to appear in Eur. Phys. J. C]

1

Conclusions and Outlook

- The CLEO'00 results for R_(c,n) reported last January are in favour of strong constraints on γ, where the second quadrant is preferred [similar conclusions also from other B → πK, ππ strategies (Hou et al., ...)]:
 - Such a situation would be in conflict with the standard analysis of the unitarity triangle!
- The observables $R_{(c,n)}$ imply also constraints on $\delta_{(c,n)}$, where CLEO'00 is in favour of $\cos \delta_c > 0$ and $\cos \delta_n < 0$:
 - Such a pattern would be in conflict with the theoretical expectation of equal signs for cos δ_c and cos δ_n!
- Further theoretical studies and better data are required before we can speculate on new physics.
- As soon as CP asymmetries $A_{\rm CP}^{({\rm c,n})}$ in $B_d \to \pi^\mp K^\pm$ or $B^\pm \to \pi^0 K^\pm$ are observed, we may extract γ and $\delta_{({\rm c,n})}$:

$$A_{\mathrm{CP}}^{(\mathrm{c,n})} = A_{\mathrm{CP}}^{(\mathrm{c,n})} \left(\gamma, q_{(\mathrm{c,n})}, r_{(\mathrm{c,n})}, \delta_{(\mathrm{c,n})} \right).$$

• Interesting playground for theorists and the B-factories!