Measurement of $|V_{cb}|$ WITH $ar{B}^0 o D^{*+} \ell^- ar{ u}$ at CLEO

KARL ECKLUND

CORNELL UNIVERSITY/CLEO

ICHEP 2000

JULY 29, 2000

Paper: ICHEP00-770 / CLEO CONF 00-03

hep-ex/0007052

Extracting $|V_{cb}|$ from $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$

The partial width is proportional to $|V_{cb}|^2$:

$$\frac{d\Gamma}{dw} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 [\mathcal{F}(w)]^2 \mathcal{G}(w)$$

$$w = v_B \cdot v_{D^*} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

For $D^*\ell\nu$, w runs from 1 to 1.5.

$$\mathcal{G}(w) = m_{D^*}^3 (m_B - m_{D^*})^2 \sqrt{w^2 - 1} (w+1)^2 \left[1 + \frac{4w}{w+1} \frac{1 - 2wr + r^2}{(1-r)^2} \right]$$

with $r = m_{D^*}/m_B$

- $\mathcal{G}(w)$ contains kinematic factors and is known
- $\mathcal{F}(w)$ is the form factor describing $B \to D^*$ transition
 - o HQET relations simplify the most general form factor
 - \circ absolutely normalized at zero recoil (w = 1)
 - As $m_Q \to \infty$, $\mathcal{F}(1) \to 1$; corrections of order $1/m_Q^2$

The plan is to measure $d\Gamma/dw$ and extrapolate to w=1 to extract $\mathcal{F}(1)|V_{cb}|$. We divide the data into ten bins of w and measure the $D^{*+}\ell\nu$ yield.

$D^*\ell\nu$ FORM FACTOR

The form factor is parameterized in HQET as

$$\mathcal{F}(w) = h_{A_1}(w) \sqrt{\frac{\tilde{H}_0^2 + \tilde{H}_+^2 + \tilde{H}_-^2}{1 + 4\frac{w}{w+1}\frac{1 - 2wr + r^2}{(1 - r)^2}}}.$$

Helicity Form Factors:

$$\tilde{H}_{0}(w) = 1 + \frac{w-1}{1-r} (1 - R_{2}(w))$$

$$\tilde{H}_{\pm}(w) = \frac{\sqrt{1 - 2wr + r^{2}}}{1 - r} \left(1 \mp \sqrt{\frac{w-1}{w+1}} R_{1}(w) \right)$$

Form Factor Ratios: (measured PRL 76, 3898)

$$R_1(w) = h_V(w)/h_{A_1}(w) \approx 1.2$$

 $R_2(w) = (h_{A_3}(w) + rh_{A_2}(w))/h_{A_1}(w) \approx 0.7$

 $h_{A_1}(w)$ may be expanded in a Taylor series around w=1:

$$h_{A_1}(w) = h_{A_1}(1)(1 - \rho_{h_{A_1}}^2(w - 1) + \ldots)$$

Alternatively dispersion relations may be used to constrain the functional form of $h_{A_1}(w)$. (PRD56,6895; NPB530,153)

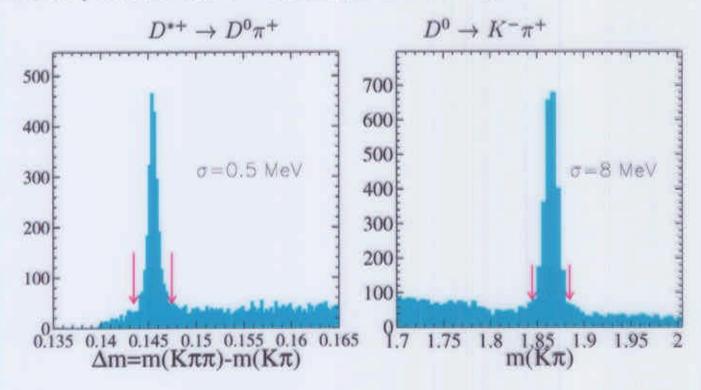
HQET also provides a robust prediction for the normalization at w = 1: (PLB264,455; 338,84; PRD47,2965; 51,2217; 52, 3149; PRL 76, 4124)

$$\mathcal{F}(1) = h_{A_1}(1) = 0.913 \pm 0.042$$

EXPERIMENT

We begin with 3.3 Million $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ events collected using the CLEO II detector at the symmetric collider CESR.

We fully reconstruct D^{*+} candidates in the decay chain



We reconstruct and identify lepton (e or μ) candidates using cylindrical drift chambers and a crystal calorimeter and muon counters.

We require p_e =0.8-2.4 GeV/c and p_{μ} =1.4-2.4 GeV/c.

SIGNAL AND BACKGROUNDS

The D^* ℓ pairs may come from different sources:

- D*ℓν events
- $D^*X\ell\nu$ events including $D^{**}\ell\nu$ and $D^*\pi\ell\nu$
- combinatoric background (~6%)
 - fake D*+ candidates
 - \circ estimated from events in the Δm sideband.
- continuum background (~ 4%)
 - o from $e^+e^- \rightarrow q\bar{q}$ q = v,d,s,c
 - \circ subtracted using data below the $B\bar{B}$ threshold
- uncorrelated background (~ 4%)
 - \circ real D^{*+} and ℓ from different B's
 - \circ estimated using inclusive D^{*+} and ℓ yields
- correlated background ($\sim 0.5\%$)
 - \circ real D^{*+} and ℓ from same B
 - \circ e.g. $B \to D^*D_s$ with $D_s \to \ell X$
 - o estimated using MC

We fit for $D^*\ell\nu$ and $D^*X\ell\nu$ after subtracting other sources of D^{*+} ℓ pairs.

We separate $D^*\ell\nu$ and backgrounds from $D^*X\ell\nu$ using kinematics.

$$\cos\theta_{B-D^*\ell} = \frac{2E_B E_{D^*\ell} - M_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B||\vec{p}_{D^*\ell}|}$$

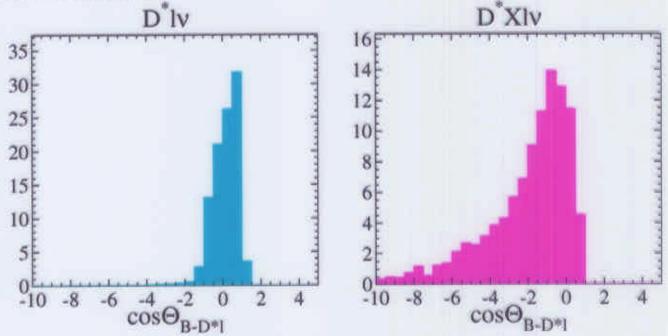
 $\cos \theta_{B-D^*\ell}$ can be determined using 4-momentum conservation,

$$p_B = (p_{D^*} + p_\ell) + p_\nu,$$

and the constraints

$$p_{\nu}^2 = m_{\nu}^2 = 0$$
 and $E_B = \sqrt{p_B^2 + m_B^2} = E_{\text{beam}}$.

For signal events, $\cos \theta_{B-D^*\ell} \in (-1,1)$, allowing separation of $D^*\ell\nu$ from background.



We separate $D^*\ell\nu$ and $D^*X\ell\nu$ events by fitting $\cos\theta_{B-D^*\ell}$.

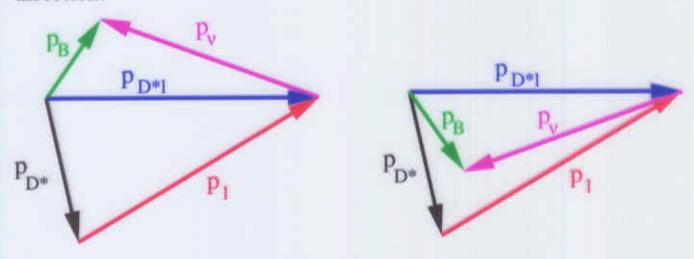
Measuring w

 $w \in (1, 1.51)$ is the Lorentz boost of the D^* in the B rest frame.

At symmetric colliders, the B's are nearly at rest: $p_B \approx 300 \text{ MeV/}c$.

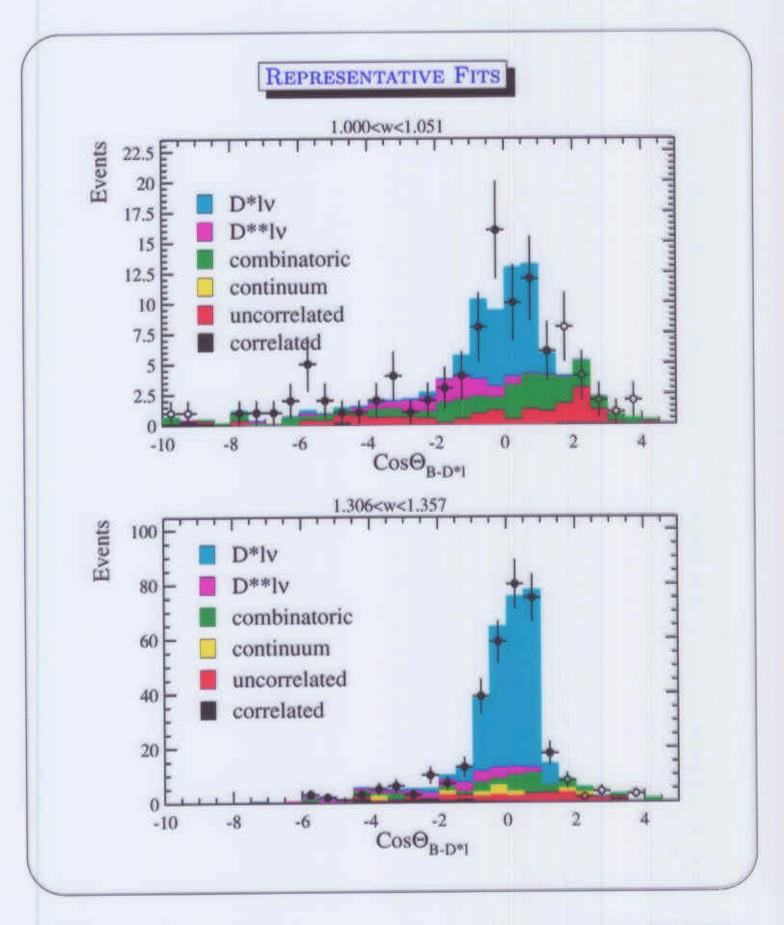
We know the magnitude but not the direction of the B momentum. It is determined up to an azimuthal ambiguity.

We compute w using the two extreme possibilities for the B direction.



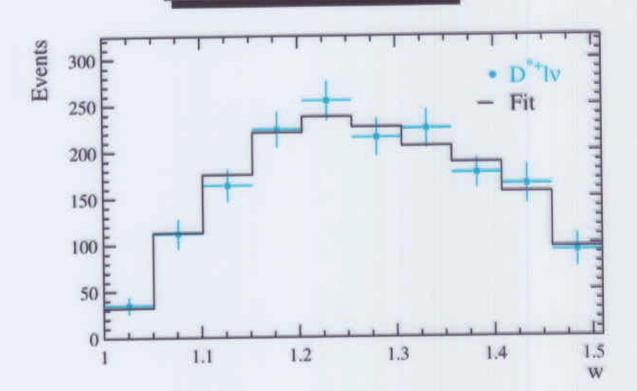
The resolution is good: $\sigma_w \approx 0.03$

We measure $d\Gamma/dw$ by fitting $\cos \theta_{B-D^*\ell}$ for the yield of $D^*\ell\nu$ events in ten bins of w.



8

FITTING $d\Gamma/dw$



$$\chi^2 = \sum_{i=1}^{10} \frac{[N_i^{obs} - \sum_{j=1}^{10} \epsilon_{ij} N_j]^2}{\sigma_{N_i^{obs}}^2}$$

 N_i^{obs} = yield in the i^{th} w bin

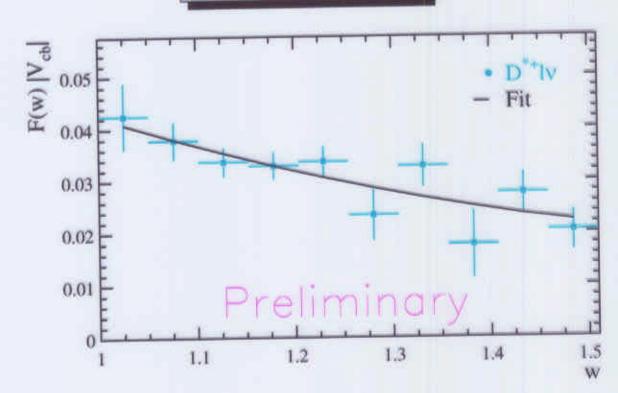
 $N_j = \text{number of decays in the } j^{\text{th}} w \text{ bin}$

 ϵ_{ij} accounts for the reconstruction efficiency and the smearing in w.

$$N_j = 4f N_{\Upsilon(4S)} \mathcal{B}(D^* \to D\pi) \mathcal{B}(D \to K\pi) \tau_B \int_{w_j} dw d\Gamma/dw$$

We use the form factor of Caprini, Lellouch and Neubert (NPB530, 153) and fit for $\mathcal{F}(1)|V_{cb}|$ and $\rho_{h_{A_1}}^2(w=1)$.

Dispersion Relation Constraint



The fit gives

$$\mathcal{F}(1)|V_{cb}| = (42.4 \pm 1.8 \pm 1.9) \times 10^{-3}$$

 $\rho_{h_{A_1}}^2 = (1.67 \pm 0.11 \pm 0.22),$

with correlation coefficient $C(\mathcal{F}(1)|V_{cb}|, \rho^2) = 0.90$.

Integrating $d\Gamma/dw$ we find

$$\Gamma(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}) = (0.0366 \pm 0.0018 \pm 0.0023) \text{ ps}^{-1}$$

 $\mathcal{B}(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}) = (5.66 \pm 0.29 \pm 0.33)\%$

Preliminary

Systematic Errors

Source	$ V_{cb} \mathcal{F}(1)(\%)$	$\rho^{2}(\%)$	$\Gamma(B \to D^* \ell \nu)(\%)$
Slow π finding	3.1	3.7	2.9
Combinatoric Bkgd	1.4	1.8	1.2
Lepton ID	1.1	0.0	2.1
$K, \pi \& \ell$ finding	1.0	0.0	1.9
Number of $B\bar{B}$ events	0.9	0.0	1.8
Uncorrelated Bkgd	0.7	0.9	0.7
Correlated Bkgd	0.4	0.3	0.5
B momentum & mass	0.3	0.5	0.4
$D^*X\ell\nu$ model	0.2	1.9	1.9
Subtotal	3.8	4.7	5.0
$R_1(1)$ and $R_2(1)$	1.4	12.0	1.8
$B(D \to K\pi)$	1.2	0.0	2.3
$ au_B$	1.0	0.0	2.1
$B(D^* \to D\pi)$	0.4	0.0	0.7
Subtotal	2.2	12.0	3.7
Total	4.4	13	6.2

CONCLUSION AND SUMMARY

We measure

$$\mathcal{F}(1)|V_{cb}| = (42.4 \pm 1.8 \pm 1.9) \times 10^{-3}$$

 $\mathcal{B}(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}) = (5.66 \pm 0.29 \pm 0.33)\%$

From theory

$$\mathcal{F}(1) = 0.913 \pm 0.042,$$

which gives

$$|V_{cb}| = (46.4 \pm 2.0 \pm 2.1 \pm 2.1) \times 10^{-3}$$

Preliminary

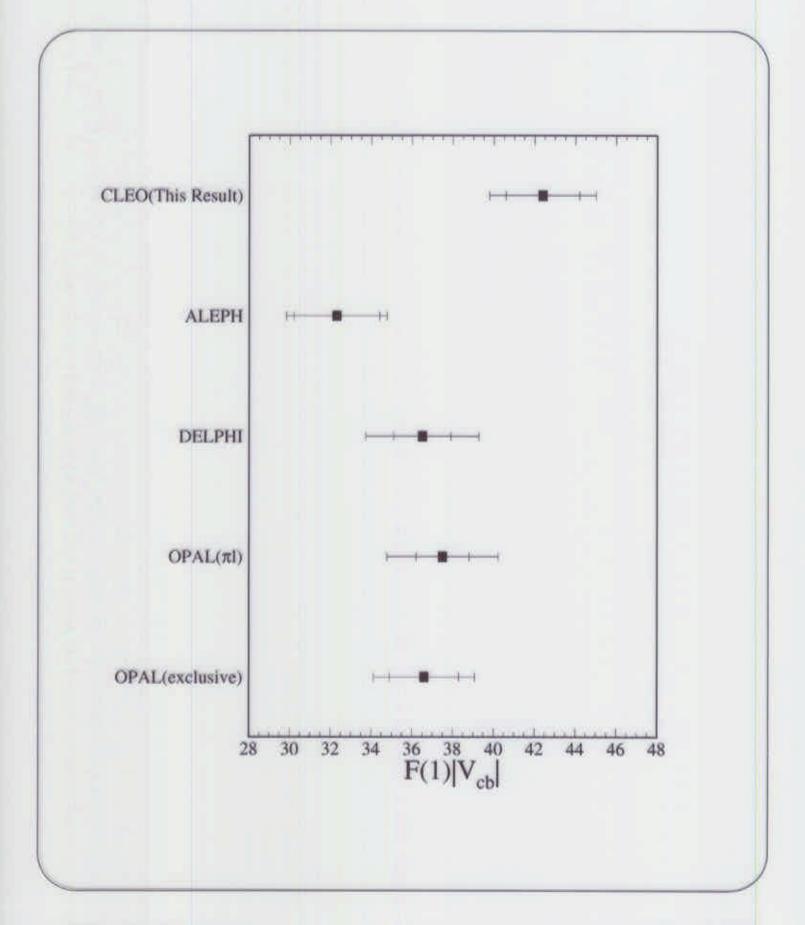
These results are

- consistent with CLEO's 1995 measurement
- · comparable to LEP measurements but somewhat larger

I have presented a measurement of $\mathcal{F}(1)|V_{cb}|$ with a

- statistical error 4.2%
- systematic error 4.4%

Combined with $D^{*0}\ell\nu$ this will be the best single measurement of $|V_{cb}|$ from exclusive decays.



13