Λ_c Production and Decay

Roy A. Briere Carnegie Mellon University (CLEO Collaboration)

> ICHEP 2000 Osaka, Japan 29 July 2000

Introduction

The Λ_c is more than just a *c* quark in a baryon!

Naively, one might expect:

• $\Gamma_{tot}(\Lambda_c) = \Gamma_{tot}(D^0)$

But: W exchange differs, Pauli interference, ...

- Exp's would have nailed down one absolute Λ_c branching ratio But: $\mathcal{B}(\Lambda_c \to pK\pi)$ still needed
- Independent fragmentation of quarks in $e^+e^- \rightarrow c\bar{c}$ But: contrary evidence in this talk!

CLEO is working on all of these issues (and more!)

Today, I will present CLEO results on:

- Measurement of the Λ_c Lifetime
- $\mathcal{B}(\Lambda_c \to pK\pi)$ using $\Lambda_c D^{(*)}$ Correlations
- Correlated Production of the Λ_c Baryon

Data Set

Data Sets used:

- 9.0 fb⁻¹ with Silicon Detector, for Λ_c decay lifetime
- 4.7 fb⁻¹ pre-Silicon data, for $\mathcal{B}(\Lambda_c \to pK\pi)$

All of the above data used for Λ_c production correlations.

All of the analyses presented use only charged tracks.

CLEO II Detector:

- 3 Layers double-sided silicon OR 6-layer straw-tube chamber
- 61 layers of wire-chamber tracking plus 4 cathode layers
- 49-sample dE/dx and Time-of-Flight system for particle ID
- CsI(Tl) calorimeter for electron ID

Λ_c Lifetime

CLEO recently published precise D meson lifetimes: G. Bonvicini et al.; PRL 82, 4586 (1999) D^0 : 408.5 \pm 4.1^{+3.5}_{-3.4} fs D^+ : 1033.6 \pm 22.1^{+9.9}_{-12.7} fs D_s : 486.3 \pm 15.0^{+4.9}_{-5.1} fs

The technique used here is very similar.

Analysis:

- Use Λ_c momenta > 2.6 GeV/c
- Mean Λ_c momentum: 3.3 GeV/c ($\gamma\beta c\tau \simeq 75\mu$ m)
- Vertex resolution along flight direction: $\sim 80 \mu {\rm m}$
- Run-by-run beam spot centroid used
- Beam spot xyz size: $350\mu m \times 7\mu m \times 10^4 \mu m$
- Use only *y*-components of decay length and momentum to extract decay time: $(m/p_y)l_y$

y beam size << vertex resolution

Veto $D^+ \to K^- \pi^+ \pi^+$ background!

could easily bias fit $(D^+ \text{ lifetime very large!})$

Λ_c Lifetime

Data: 5513 ± 120 events

Unbinned Likelihood Fit:

- \bullet Use $\pm 40~{\rm MeV}$ mass window
- Background vs. signal probability based on mass

Seven fit parameters:

- 1: Λ_c lifetime
- 2: Global scale factor for per-candidate resolution
- 3: Fraction of signal with wide resolution function (width of wide resol'n Gaussian fixed at 8 ps)
- 4,5: Fraction and lifetime of mis-reconstructed events
- 6,7: Background lifetime, and fraction of prompt background

Result: $\tau(\Lambda_c) = 177.6 \pm 5.9 \pm 4.0$ fs

Largest systematics are:

- 2.2 fs from possible bias in fit to zero-lifetime sample of $\gamma \gamma \rightarrow 4\pi$
- 2.7 fs from statistical accuracy of a MC fit tests
- 1.8 fs from dependence on Λ_c mass
- 9 systematics considered.

PDG2000 World Ave: 206 ± 12 fs

Best previous measurement: $215 \pm 16 \pm 8$ fs (E687; 1993; 1340 events) FOCUS'99 (prelim.): 204.5 ± 3.4 fs (stat. error only) SELEX'98 (very prelim.): 177 ± 10 fs (stat. error only)

$$\mathcal{B}(\Lambda_c \to pK\pi)$$

Hard to measure an absolute Λ_c branching ratio

Some previous measurements use B decays, assuming:

• $\mathcal{B}(B \to \Lambda_c \bar{N}X) = 100\%$

If true; $B \to \bar{p}X$ is unbiased source of $B \to \Lambda_c \bar{p}W^-$

But assumptions are not true!

- $B \to \Xi_c \bar{\Lambda}_c, \ \bar{\Lambda}_c \to \bar{p}X$
- $B \to DN\bar{N}X$

B decay method underestimates $\mathcal{B}(\Lambda_c \to pK\pi)$! PDG treats by adding 30% systematic:

 $\mathcal{B}(\Lambda_c \to pK\pi) = (4.14 \pm 0.91 \pm 1.24)\%$

Other measurements use: $\Gamma(\Lambda_c \to \Lambda \ell \nu) / \Gamma(\Lambda_c \to p K \pi)$

• Assume $\Gamma(\Lambda_c \to X_s \ell \nu) \simeq \Gamma(D^0 \to X_s \ell \nu)$ and $\Gamma(\Lambda_c \to \Lambda \ell \nu) \simeq \Gamma(\Lambda_c \to X_s \ell \nu)$

These approximations have sizable errors, taken as 30% by PDG: $\mathcal{B}(\Lambda_c \to pK\pi) = (7.7 \pm 1.5 \pm 2.3)\%$

We will use $c\bar{c}$ charm-tagging here. CLNS 00/1664, CLEO 00-3 (hep-ex/0004001) submitted to PRD

$\mathcal{B}(\Lambda_c \to pK\pi)$

Technique:

Usually have (corrections will be made)

- Λ_c and an \overline{N} in one hemisphere,
- \bar{c} hadronizing in other hemisphere.

(NOTE: We'll use a | to separate final state into hemispheres)

Example: $e^+e^- \to (c|\bar{c}) \to (\Lambda_c \bar{p}|\bar{D})$

Measure BR as: $\mathcal{B}(\Lambda_c \to pK\pi) = (\bar{p}\Lambda_c(\to pK\pi)|\bar{D})/(\bar{p}|\bar{D})$

Three types of \bar{c} tags used:

- One of: $\overline{D}^0 \to K^+\pi^-, D^- \to K^+\pi^-\pi^-, \text{ or } D_s^- \to \phi\pi^-$
- Soft π^- from $D^{*-} \to \bar{D}\pi^-_{soft}$

Use angular correlation with jet thrust

• e^- from $\bar{D} \to X e^- \nu_e$

$$\mathcal{B}(\Lambda_c \to pK\pi)$$

Correct numerator for:

- Events with no \bar{D} tag: $(\bar{p}\Lambda_c|N\bar{\Lambda}_c)$
- Fake protons

Correct denominator for:

- Events with baryons in opposite hemispheres $(\bar{p}D|\bar{D}N)$
- Fake protons

Results:

- $(4.9 \pm 0.5)\%$ from \bar{D} tags
- $(5.2 \pm 1.3)\%$ from π_{soft} tag
- $(5.6 \pm 2.5)\%$ from e^- tag

Combining all three tag methods: $\mathcal{B}(\Lambda_c \to pK\pi) = (5.0 \pm 0.5 \pm 1.2)\%$

Systematics dominated by:

- Tag proton ID and spectrum (15%)
- Event selection and MC modeling (12 5%)
- 13 different errors evaluated

Λ_c Production Correlations

Many analyses are simpler if c and \bar{c} fragment independently

- Preceding $\mathcal{B}(\Lambda_c \to pK\pi)$ analysis
- CLEO analysis of $\Lambda_c \to \Lambda X$

Analysis:

- Measure $(\Lambda_c^+ | \Lambda_c^-)$ vs. $(\Lambda_c^+ | \bar{D}^{(0,-)})$
- Normalize to number of $\Lambda_c^-, \bar{D}^0, D^-$

Denote norm'd ratio as: $(\Lambda_c^+ | \text{TAG})/\text{TAG}$ where $\text{TAG} = \Lambda_c^-, \bar{D}^0, \text{or}D^-$

If fragmentation is independent:

• Expect $(\Lambda_c^+ \mid \Lambda_c^-) / \Lambda_c^- = (\Lambda_c^+ \mid \bar{D}) / \bar{D}$ We will compare the ratio of these ratios to 1.

Can also look at Λ as an indicator of Λ_c :

• Higher statistics, but perhaps additional systematics...

Another way of phrasing independent fragmentation:

• baryon # conservation occurs in Λ_c hemisphere

Some correlation should not be too surprising.

Λ_c Production Correlations

Results:

Correlations are indicated by a deviation from 1 NOTE: MC has NO correlations

	Data	Data	Monte Carlo	Monte Carlo
	$pK\pi$	$p ar{K}^0_S$	$pK\pi$	$p ar{K}^0_S$
$\frac{(\Lambda_c^+ \Lambda_c^-)/\Lambda_c^-}{(\Lambda_c^+ \bar{D}^0)/\bar{D}^0}$	3.11 ± 0.91	3.40 ± 1.10	0.85 ± 0.85	1.40 ± 0.99
$\frac{(\Lambda_c^+ \Lambda_c^-)/\Lambda_c^-}{(\Lambda_c^+ D^-)/D^-}$	2.71 ± 0.87	2.93 ± 1.08	0.62 ± 0.63	1.61 ± 1.22
$rac{(\Lambda \Lambda_c^-)/\Lambda}{(\Lambda ar{D}^0)/ar{D}^0}$	3.58 ± 0.23	2.97 ± 0.34	1.55 ± 0.18	1.08 ± 0.27
$rac{(\Lambda \Lambda_c^-)/\Lambda}{(\Lambda D^-)/D^-}$	3.17 ± 0.24	2.63 ± 0.32	1.26 ± 0.15	0.88 ± 0.22

Clear and consistent evidence for production correlations!

Perhaps not earth-shaking, **BUT**:

Monte Carlos generally assume independence!!!

Should be easy to confirm and quantify with large new datasets from CLEOIII, BaBar, and Belle...

Conclusion

CLEO has a long history of charm baryon physics:

- Discovered more states than all others combined! (see spectroscopy session for more new ones...)
- Many investigations of decay modes, production in *B* decays, etc.

Today, several new contributions to Λ_c physics: New, precise (and lower) Λ_c lifetime New method and result for $\mathcal{B}(\Lambda_c \to pK\pi)$ Evidence for correlations in charm fragmentation