Hard scattering in B decays and γ from $B \to \pi K$ decay

ICHEP2000, Osaka 29 July 2000 M. Beneke (Aachen)

1) QCD factorization formula for hadronic, two-body B decays – Results for πK and $\pi \pi$ final states.

Theory background: M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, PRL 83 (1999) 1914 and [hep-ph/0006124].

Results based on work in preparation and paper submitted to this conference [hep-ph/0007pmn].

2) Corrections to heavy quark/large energy symmetries for $B \to \text{light form factors}$.

M. Beneke and T. Feldmann, in preparation

- will be omitted for lack of time.

QCD factorization formula

Hard gluon effects $(k > m_b)$ can be calculated and lead to the effective hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{i} \lambda_i^{\text{CKM}} C_i(\mu) Q_i(\mu)$$

Principal idea: factorize systematically the remaining hard effects $(k \sim m_b)$ from long-distance effects $(k \sim \Lambda_{\rm QCD})$ – heavy quark expansion. Result is:

$$\langle \pi K | Q_i | B \rangle = f_+^{B \to \pi}(0) \, f_K \, T_{K,i}^{\rm I} * \Phi_K$$

$$+ f_+^{B \to K}(0) \, f_\pi \, T_{\pi,i}^{\rm I} * \Phi_\pi + \underbrace{f_B f_K f_\pi \, T_i^{\rm II} * \Phi_B * \Phi_K * \Phi_\pi}_{ \text{spectator interaction}}$$

- long-distance: form factor, decay constant, light-cone distribution amplitudes
- short-distance: kernels $T^{I,II}=\alpha_s^0+\alpha_s^1+\ldots$, contain all "non-factorizable" corrections and strong phases.

Status: all hard scattering kernel to order α_s (order α_s^0 coincides with the naive factorization approximation).

New results:

I) Factorization proof at 2 loop order for $B \to DL(ight)$ and phenomenological analysis of heavy-light final states. [Not discussed here – see hep-ph/0006124.]

II) "Electroweak penguin effects":

Matrix elements of electro-magnetic penguin operators and electromagnetic penguin corrections of QCD operators.

[See also Du, Yang, Zhu, hep-ph/0005006; Muta, Sugamoto, Yang, Yang hep-ph/0006022.]

- III) Kernels for asymmetric light-cone distribution amplitudes (as relevant for K)
- ightarrow Calculation of non-factorizable SU(3) breaking effects.

24

IV) Complete calculation of "chirally enhanced $1/m_b$ corrections".

→ very important effect, e.g. in spectator interaction:

$$\int_0^1 \frac{du}{\bar{u}} \frac{dv}{\bar{v}} \, \Phi_K(u) \left(\Phi_\pi(v) + \frac{2\mu_\pi}{m_b} \frac{\bar{u}}{u} \right) \approx 9 \bigg(1 + \underbrace{\frac{2\mu_\pi}{3m_b} \int_0^1 \frac{dv}{\bar{v}}}_{\text{soft dominated}} \bigg)$$

where $2\mu_\pi/m_b \equiv -4\langle\bar{q}q\rangle/(f_\pi^2 m_b) \sim \Lambda_{\rm QCD}/m_b$ but ≈ 1 numerically.

Divergent integral \rightarrow breakdown of factorization at order $1/m_b$, soft rescattering enters at this order.

BUT: the size of this special $1/m_b$ correction is not an indication that the $1/m_b$ expansion breaks down.

Choice of parameters:

- $\int_0^1 dv/\bar{v} = \ln(m_B/0.35\,\text{GeV}) + r$, $r \in [0,3]$ (dark) and [0,6] (light) with arbitrary phase (separately in penguin diagrams and spectator interaction).
- $\lambda_B \in [0.2, 0.5] \, \text{GeV}$, $m_B/\lambda_B \equiv \int \frac{d\xi}{\xi} \Phi_B(\xi)$
- $\mu \in [m_b/2, 2m_b]$ (renormalization scale)
- $\alpha_s(m_Z)=0.118,\ |V_{cb}|=0.039$ and $\left|\frac{V_{ub}}{V_{cb}}\right|=0.085$ fixed (SM input parameters rather than theory uncertainty).

I: πK and $\pi \pi$ amplitudes

 $\pi\pi$:

$$\mathcal{A}(B^0\to\pi^+\pi^-)=T\left[e^{i\gamma}+(P/T)_{\pi\pi}\right]$$

 πK :

$$\begin{split} \mathcal{A}(B^+ \to \pi^+ K^0) &= P \left(1 - \varepsilon_a \, e^{i\eta} e^{i\gamma} \right), \\ -\sqrt{2} \, \mathcal{A}(B^+ \to \pi^0 K^+) &= P \left[1 - \varepsilon_a \, e^{i\eta} e^{i\gamma} \right. \\ &\qquad \qquad - \varepsilon_{3/2} \, e^{i\phi} (e^{i\gamma} - q \, e^{i\omega}) \right], \\ -\mathcal{A}(B^0 \to \pi^- K^+) &= P \left[1 - \varepsilon_a \, e^{i\eta} e^{i\gamma} \right. \\ &\qquad \qquad - \varepsilon_T \, e^{i\phi_T} (e^{i\gamma} - q_C \, e^{i\omega_C}) \right], \\ \sqrt{2} \, \mathcal{A}(B^0 \to \pi^0 K^0) &= \mathcal{A}(B^+ \to \pi^+ K^0) \\ &\qquad \qquad + \sqrt{2} \, \mathcal{A}(B^+ \to \pi^0 K^+) - \mathcal{A}(B^0 \to \pi^- K^+) \end{split}$$

	Range, NLO	LO
$-\varepsilon_a e^{i\eta}$	$(0.017 – 0.021) e^{i [13,20]^{\circ}}$	0.019
$arepsilon_{3/2} e^{i\phi}$	$(0.20 – 0.38) e^{i[-30,7]^{\circ}}$	0.26-0.50
$qe^{i\omega}$	$(0.53 – 0.63) e^{i [-7,3]^{\circ}}$	0.63-0.64
$arepsilon_T e^{i\phi_T}$	$(0.20 – 0.29) e^{i[-19,3]^{\circ}}$	0.26-0.44
$q_C e^{i\omega_C}$	$(0.00 - 0.22) e^{i [-180,180]^{\circ}}$	0.00-0.11
$(P/T)_{\pi\pi}$	$(0.19 - 0.29) e^{i[-1,23]^{\circ}}$	0.12-0.21

Remarks:

- Renormalization scale dependence strongly reduced by LO → NLO.
- 2) Ranges at NLO are obtained by scanning. There are correlations between the parameters, which are not displayed.

Summary:

- 1) Corrections to naive factorization are important
- Strong phases are small in general, except for a phase related to electroweak penguins.
- \rightarrow direct CP asymmetries up to 10% for $\pi^+\pi^-$, π^0K^+ , π^-K^+ , π^0K^0 depending on γ .

Exceptions:

- $\pi^+ K^0$ very small,
- $-\pi^0\pi^0$ anything.

II: "Non-factorizable" SU(3) breaking effects

Bounds [Fleischer-Mannel, Neubert-Rosner] on the angle γ derived from ratios of πK branching fractions rely on an estimate of SU(3) flavour-symmetry violations. E.g.,

$$\begin{split} &\frac{\varepsilon_{3/2}}{\sqrt{1-2\varepsilon_a\cos\eta\cos\gamma+\varepsilon_a^2}}\\ &=R_{SU(3)}\tan\theta_C\left[\frac{2\mathrm{Br}(B^\pm\to\pi^\pm\pi^0)}{\mathrm{Br}(B^\pm\to\pi^\pm K^0)}\right]^{1/2}, \end{split}$$

where $R_{SU(3)}=1$ in the SU(3) limit. Write

$$R_{SU(3)} = \frac{f_K}{f_\pi} \left(1 + \delta R_{\rm nf} \right)$$

Result: $|\delta R_{\rm nf}| < 4\%$ even for large variations of the pion and kaon distribution amplitude.

This result is general.

 $\rightarrow SU(3)$ breaking seems to reside mainly in $f_K/f_\pi \approx$ 1.22 (at least at leading power in $1/m_b$).

III: CP averaged branching fraction ratios

Despite significant corrections to naive factorization, the qualitative pattern that emerges for the set of $\pi\pi$ and πK decay modes is similar to that of naive factorization:

the penguin-tree interference is constructive (destructive) in $B\to\pi^+\pi^-$ ($B\to\pi^-K^+$) decays if $\gamma<90^\circ$. Taking the currently favoured range $\gamma=(60\pm20)^\circ$,

we find [CLEO, hep-ex/0001010 in brackets]:

Br($\pi^+\pi^-$)

0.5.1.0 [0.25 ± 0.10] 0.36±0.26 BR

$$\frac{\mathsf{Br}(\pi^{\mp}K^{\pm})}{\mathsf{Br}(\pi^{\mp}K^{\pm})} = 0.5-1.9 \quad [0.25 \pm 0.10] \quad \frac{0.3620.26 \text{ BR}}{0.3420.29 \text{ BB}}$$

$$\frac{\mathsf{Br}(\pi^{\mp}K^{\pm})}{2\mathsf{Br}(\pi^{0}K^{0})} = 0.9-1.4 \quad [0.59 \pm 0.27] \quad 0.4420.22 \text{ BA}$$

$$\frac{2\mathsf{Br}(\pi^{0}K^{\pm})}{\mathsf{Br}(\pi^{\pm}K^{0})} = 0.9-1.3 \quad [1.27 \pm 0.47] \quad 2.36 \pm 4.42 \text{ BA}$$

$$[R_{\star}^{-1} - \mathsf{Neubert-Rosner}]$$

$$\frac{\tau_{B^{+}}}{\tau_{B^{0}}} \frac{\mathsf{Br}(\pi^{\mp}K^{\pm})}{\mathsf{Br}(\pi^{\pm}K^{0})} = 0.6-1.0 \quad [1.00 \pm 0.30] \quad 4.41 \pm 0.32 \text{ BR}$$

[R - Fleischer-Mannel]

The near equality of the second and the third ratios is a result of isospin symmetry.

We find (almost independently of γ):

$${\rm Br}(B\to\pi^0K^0)=(4.5\pm2.5)\times 10^{-6}\,(V_{cb}/0.039)^2(f_+^{B\to\pi}(0)/0.3)^2$$

Ratios of CP-averaged $B \to \pi K$ and $\pi \pi$ decay rates. The scattered points cover a realistic (dark) and conservative (light) variation of input parameters. The dashed curve is the LO result, corresponding to conventional factorization.

IV: $\sin(2\alpha)$ from $B_d \to \pi^+\pi^-$ decays

Time-dependent, mixing-induced CP asymmetry without isospin analysis?

$$\mathcal{A}(t) = -S \cdot \sin(\Delta M t) + C \cdot \cos(\Delta M t)$$

$$S = \sin(2\alpha) + \mathcal{O}(P/T)$$

$$C = \mathcal{O}(P/T)$$

Fix $\sin(2\beta) = 0.75$ and $\alpha, \beta, \gamma > 0$.

ightarrow useful constraints on $\sin(2\alpha)$ can be obtained since $(P/T)_{\pi\pi}$ is well-predicted.

Conclusion

Examined consequences of QCD factorization for πK final states, including chirally enhanced $1/m_b$ corrections.

- * significant corrections with respect to naive factorization
- qualitative pattern of (CP-averaged) branching fractions similar.
- moderately small strong phases (direct CP asymmetries)
- robust predictions for many observables
- * disagreement with CLEO data of 01/2000 for $\pi^0 K^0$ final state (data too large) and relative branching fractions of $\pi\pi$ and πK modes (data too small).

Future detailed publication will explore correlations to constrain the parameter introduced to account for chirally-enhanced terms.