Final States in Diffraction at HERA

Mario Martínez (DESY-ZEUS)

for the H1 and ZEUS Collaborations

- Introduction
- Event Shapes
- Dijet Production
- Three-jet Production
- Conclusions

30th International Conference on High Energy Physics Osaka, Japan, July 27th - August 2nd, 2000

Introduction (I)

Events with no activity in the forward direction \Rightarrow Large Rapidity Gap events (LRG).

Exchange of colour singlet $\Rightarrow I\!P$ exchange

 \Rightarrow The large γ -virtualities at HERA allow to study the *IP*-structure and formulate it in terms of QCD (quarks and gluons) Introduction (II)

• Ingelman-Schlein factorisable model \rightarrow Pomeron with partonic structure (quark and gluon densities)

HERA data \Rightarrow **Pomeron** dominated by gluons.

• pQCD inspired models (γ -dissociation picture) \rightarrow Pomeron described as two-gluons exchange

 $q\overline{q}g$ contribution dominates at low-eta ($eta=rac{Q^2}{Q^2+M_X^2}$).

 \Rightarrow Clear dijet structure for $M_X \ge 8$ GeV.

ZEUS 1997 Preliminary

 \Rightarrow Dominant aligned configurations w.r.t the $\gamma^* I\!\!P$ axis.

Event Shapes in Diffractive DIS (ZEUS LPS : Contributed paper N° 876) (H1 LRG: Phys. Lett. B428 (1998) 206)

ZEUS 1997 Preliminary

- P_t suppression (**I***P*-side) smaller than in γ^*P data.
- At high masses (> 16 GeV) \rightarrow larger P_t in γ -side.

photon Pomeron

Dijet Production in Diffractive DIS (H1 Collab., Contributed paper N° 960)

 $egin{aligned} 4 < Q^2 < 80 \; {
m GeV}^2 \ 0.1 < y < 0.7 \ x_{I\!\!P} < 0.05 \ M_Y < 1.6 \; {
m GeV} \ |t| < 1.0 \; {
m GeV}^2 \end{aligned}$

Cone algorithm (R=1.0) in the $\gamma^* p$ -CMS $P^*_{T,jet} > 4$ GeV and $-3 < \eta^*_{jet} < 0$ ($L = 17.9 \text{pb}^{-1} \rightarrow \sim 2500$ dijet events)

Diffractive Dijets

• Sensitivity to the Pomeron trajectory.

• Dijet data prefers $\alpha_{I\!\!P}(0) \sim 1.2 \rightarrow (F_2^{D(3)} \text{ analysis}).$

Dijet Production in Diffractive DIS

(H1 Collab., Contributed paper N^o 960)

Resolved *IP* model:

 \rightarrow Dijets sensitive to gluon in $I\!\!P$ (from BGF)

$$z_{I\!\!P}^{j\,ets} = rac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

$$F_2^{I\!\!P} = \sum\limits_i e_i^2 f_{q_i/I\!\!P}(z,\mu^2)$$

- Gluon-dominated Pomeron describes the data.
- Sensitivity to $f_{g/IP} \rightarrow$ flat distribution preferred.
- $z_{I\!\!P}^{jets}$ peaks at $\sim 0.2 \rightarrow$ large Pomeron remnant.

- Saturation Model \rightarrow factor 2 too low. (k_t ordering, gluon-distribution, t-dependence..?)
- Bartels, Jung, Lotter, Wüsthoff model \rightarrow roughly describes the data with $p_{t,(cut)}^2(\text{gluon}) = 1.0 \text{ GeV}^2$.
- for $p_{t,(cut)}^2(\text{gluon}) = 0.5 \text{ GeV}^2 \rightarrow \text{x-section overestimated}$ \rightarrow suppression of low- p_t gluon radiation ?

3-Jet Production in Diffractive DIS (ZEUS Collab., Contributed paper N° 872)

 $5 < Q^2 < 100 \,\, {
m GeV}^2 \ 200 < W < 250 \,\, {
m GeV} \ x_{I\!\!P} < 0.025 \ 23 < M_X < 40 \,\, {
m GeV} \ \eta_{
m hadron}^{
m max} < 3.0$

In PETRA e^+e^- experiments \Rightarrow three-jet production was observed for \sqrt{s} in the range $29 \lesssim \sqrt{s} \lesssim 36$ GeV

Exclusive k_T algorithm in the $\gamma^* I\!\!P$ -CMS (E-scheme)

- three-jet signal defined with $y_{\rm cut} = 0.05$ (good parton-hadron correlation)
- RAPGAP (Resolved gluon-dominated $I\!\!P$)
- SATRAP (Saturation Model)
- RIDI (Ryskin pQCD approach)

Evidence for three-jet production in LRG events!

• Different three-jet topologies are observed in the data.

• Gluon-dominated resolved $I\!\!P$ describes the data.

• Saturation Model and Ryskin's pQCD Model too low. (shape indicates that larger $p_t(gluon)$ is needed)

Summary and Conclusions

- Event Shape:
 - Dominant aligned configurations w.r.t. $\gamma^* I\!\!P$ axis.
 - At high masses (> 16 GeV) larger $< p_t^2 >$ in γ -side.
- Jet Production:
 - Evidence for three-jet production ($\gamma I\!\!P$ cms).
 - Jet measurements well described by a factorisable model with a gluon-dominated Pomeron.
 - Dijet x-sections sensitive to $\alpha_{I\!\!P}(0)$ and $f_{g/I\!\!P}(z,\mu^2)$.
 - Same $\alpha_{I\!\!P}(0)$ for dijet and inclusive measurements.
 - Flat gluon distribution (no leading gluons!) preferred.
 - BJLW pQCD model with $p_{t,cut}^2(\text{gluon}) > 1 \text{ GeV}^2$ roughly describes the measured dijet x-sections.
 - Saturation model and Ryskin's pQCD model do not describe the measured x-sections.
 ⇒ larger p_t(gluon) is needed(?)
- Some new results not covered by this talk:
 - Open charm production in diffractive DIS (ZEUS Collab., Contributed paper N° 874)
 - Energy flow between jets in γP (H1 Collab., Contributed paper N° 962)