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Kaon Physics still defies complete physical understanding:
it is a very complicated blend of Ultraviolet and Infrared effects

The problem is:
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Being a process involving hadrons, it must be treated non-
perturbatively.

Due to the difficulty of putting the Standard Model on the lattice
(ﬁ)l‘ technical (M., >~ o) & theoretical reasons (breaking of chual gauge
invarianee in regulurisation)) we must “integrate™ analytically the heavy

degrees of freedom (W's. Z's)

« Effective low energy actions for non-leptonic decays:
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and ¢, is fixed, in Perturbation Theory, so that quark masses are not
modified by Weak Interactions.

The term proportional to Q,, does not contribute to the physical

amplitudes, being the four-divergence of the Axial current (Ap,, = 0).

Since My >> Ayey We can use Operator Product Expansion:
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The O'*'*s have definite transformation properties under the
SU(3)® SU(3) chiral group (and some discrete symmetries): they
transform as (8, 1) and (27.1)

The Cy(u). can be reliably computed in Perturbation Theory. due
to Asymptotic Freedom, and show a slight octet enhancement:
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The rest of the enhancement (= 10) should be provided by the
matrix elements of O’ and is a non perturbative, infrared effect.

As for Lattice discretisation (regularisation) the difficulty lies in
the fact that naive discretisation of Dirac fermions entails a
multiplication of low energy degrees of freedom (Doublers) whose
elimination complicates the scheme.



There are, essentially, two possibilities:

a) Wilson Fermions

A term is added to the Lagrangian. breaking explicitly the chiral
symmetry. which can be restored, as a— 0. by the inclusion of
appropriate counterterms.

This formulation is ultra-local (at the lagrangian level only near
neighbours interactions are involved) and therefore it is very
convenient for numerical purposes.

b) Ginsparg-Wilson Fermions

(Narayanan-Neuberger 1993, Lischer, Hasenfratz 1998)

This discretisation is much more respectful of the chiral
properties of the (continuum) QCD lagrangian, at the expense of being
non local at the lattice level, which makes it, at the moment,
numerically very demanding.

In this talk, therefore, my remarks on renormalisation, will be
addressed to Wilson fermions

The difficulty of the problem consists, first of all, in giving the
correct definition of the operators



In order to construct finite composite operator of dimension 6.
O¢(u). we must

mix the original bare operator, Oﬁ.(aﬂ, with bare operators of
equal (O‘;,”{a)b or smaller ((O:(a)f) dimension, in general with
different naive chiralities

We have, schematically:
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Being QCD asymptotically free, one could think that the mixing
coefficients could be reliably computed in Perturbation Theory.

Numerical attempts (and theoretical considerations) show that this
is not necessarily the case

We should therefore employ a general non perturbative technique

Such a technique is based on the systematic exploitation of
(continuum) symmetries.

This suggests the use of Chiral Ward Identities (or equivalent
methods) to classify the composite operators.
(L. Maiani, G.Martinelli. G.C.Rossi, M. Testa 1987)



Infrared Problems (common to all approaches)
(Continuum)

|) Infinite volume

In order to compute the K — &z width we have to evaluate the
matrix element:

w7 @) (= p)|Hy |K)
with two interacting hadrons in the final state.
This is not easy to do in the euclidean region

It can be shown (L.Maiani, M. Testa 1990) that:
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scattering amplitude (final state interaction).

If p= 0 we have:
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Only for z’s at rest (and weakly interacting) it is possible to

extract a meaningful matrix element

A possible strategy is, therefore, to compute K — zz with the
two pions at rest, choosing the quark masses such that my =2m , or

my = m , and then extrapolating to the real world through chiral
perturbation theory.

These choices do not require any renormalisation, apart from the

overall normalisation



2) Finite volume

Lellouch and Liischer (2000) have proposed a variant of this
(infrared) strategy, based on the exploitation of the finiteness of
volume in lattice simulations.

They find a relation between finite and infinite volume matrix
elements:
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A simple demonstration
(D.Lin, G.Martinelli, C Sachrajda, M. Testa in preparation)

In a finite volume the allowed values. k of the “radial” relative
momentum of a two particle state obeys the relation:
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where 8,(k) is the s-wave phase-shifi, ¢ = Z_L k is related to the
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center of mass energy, £ as:
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in order to relate the states at finite and infinite volume we
consider the two-point Green function of a scalar operator o(x):
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where | zz.n),., | 77z, E), and |K), denote finite volume states with
zero total momentum (normalised to 1) and:
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denotes the density of states of given energy £.

On the other hand:
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where

and | zz.E) and |K) now denote infinite volume states of zero total
momentum (of total energy E), normalised as:
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By comparison we get:
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The strategy is as follows

Tune the space volume ¥ so that the first excited two-pion state
(n=1) is degenerate in energy with the kaon state (L = 5+ 6 Fm) and
consider the finite volume Green'’s functions:
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because final state interactions phases cancel.
Then, from:
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Remarks

a) The relation between finite and infinite volume decay rate
becomes valid when the sum over energy states can be approximated
(up to exponentially small terms in the volume) by the corresponding
integral.

This requires:
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which hints at a connection with the methods which put the pions at
rest.

b) In the case of a Al = 3 transition, within any procedure, we

must subtract a disconnected contribution:
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Operator Product Expansion
(C.Dawson, G Martinelli, G.C.Rossi, C.T Sachrajda, S Sharpe. M. Talevi, M. Testa 1997)

The distortion of the composite operators in the effective Weak
Hamiltonian is due to the fact that. in the computation, we insist to
integrate up to zero (lattice) distance.

If we could integrate up to a finite (physical) distance and perform

analytically the final, continuum. integration the problem would be
avercome.

In order to accomplish this, we start again from the definition of
the Weak Hamiltonian:
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The |C, (Mi')l‘s. and therefore the r:,-(x;ﬁi]"s, are reliably
"

computable within perturbation theory
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It is then possible to get information directly on the continuum
k—g " (u)h")) (including their normalization) by

measuring:

matrix elements [(A

I " , : ,
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in the region:
a << x| << Apep

If the weak currents are O(a) improved, then the whole
computation is automatically Ofw) improved.

In the case of K — zz we have the contribution of 0" and
>

(m, — m )0, in the parity violating case, or (m> — m- Ym, +m )0,
in the parity conserving case.

n'

28, ,
c(r#)x[i((l:’;)J B ar(ﬂ) V) log(e) + ..

y(+1=4 ?,l"}=_$ }‘”.=16

As before no chiral expansion is used and therefore this method
could be applied also to B-decays

This method has been successfully tested by Caracciolo, Montanari
and Pelissetto (1998-20001 in two dimensional e-models



CONCLUSIONS AND OUTLOOK

Lattice discretisation is the only convergent (as a=0)
approximation scheme to QCD.

Problems related to hadron physics (like [K—> zz] and E]} can be
reliably addressed and hopefully solved soon.



