Future Prospects for Electron Colliders

ICHEP2000 (Osaka)
Parallel Session (PA-13)

Nobu Toge (KEK)

Task assigned to this speaker is -

to give a talk encompassing both

- the status of current development on electron linear colliders (LC) and
- some description of technological developments relevant to the longer term future

Specifically, the speaker will present the following -

- 1. Introduction
- Review of R&D work for near-future LCs: Tesla, NLC, JLC, CLIC
- 3. 90 GHz studies
- 4. Additional Remarks
- Conclusions

Special thanks to -

S.Holmes, I.Wilson, R.Brinkmann, R.Siemann, H. Henke, colleagues from KEK, SLAC and FNAL.

1. Introduction

Everyone knows that the size of e+e- storage rings L(ring) has to grow as:

towards higher ECM, for compensating increased amount of synchrotron radiation energy loss. On the other hand, in case of linear colliders (LC):

Hence, at some point, LC should become economically a more viable HE solution. In fact, it looks like post-LEP e+e- machines already had better be an LC

Linac is a device that converts AC wall-plug power into kinetic energies of the beam particles that are to be accelerated.

Accelerating structures / cavities with 50 ~ 60 Hz resonant frequencies are not too attractive, so we go to high RF.

http://www-sldnt.slac.stanford.edu/sld/tblc/

High-power RF for use at a linac is created via an interaction of high-current electron beam with surrounding cavities -

Klystron - a vacuum tube which conceptually resembles a triode.

Working models exist for RF of a few hundred MHz up to 10 - 20 GHz.

Two-beam Accelerator - Pick-up the power from the "drive beam" accelerator and feed it into the "colliding beam" accelerator.

Considered an attractive option for ~ 20 GHz or above.

Beam acceleration takes place in "accelerating structures", which are basically a series of resonant cavities. The frequency and phase of resonant RF are arranged, so as to precisely match the travel of accelerated beam.

Room-temperature copper structures - Conventional or diamond-turning machining. Higher freq RF choice is considered preferrable for improved power efficiency and robustness against discharges (at the expense of more challenging fab + assembly tolerance).

Use at: a few up to 30 GHz or more.

Superconducting structures - Special material and careful shaping + assembly process. Considered attractive for good power efficiency.

Use at: Below ~ 1 GHz.

301631.45

2000

COLUL

UBS

Quote: K. Hübner review '99 ICFA Seminar (FNAL) 11

Normalized beam emittances in Linear Colliders

ATF at KEK has basically demonstrated the feasibility of producing ultra-low emittance beams, although it has remaining issues to address in higher intensity, multi-bunch beam operation coming years.

Luminosity Formula

	395
	2
	34
	27
	**
	- 35
	- 55
	- William
	200
	On .
	100
	0
	2
	CO.
	77
	D2
	192
	1777
	0
	15
	G
	0
	(A)
	62
	-
	M
	(5)
	PE
	403
	/11
	pile
	Suit .
	340
	1
	100
	194
	6
	Bills
	Spine .
	0
	200
	94
	0
	100
	B
	hom
	home
	home.
	home.h
	home.ht
	home, htm
	home.html
	home, html
	home.html (
	home, html (C
	home, html (C
	home.html (Ca
	home.html (Cas
	home.html (Case
	home.html (Case
	home.html (Case:
	home.html (Case: E
	home.html (Case: E
	home.html (Case: EC
	home.html (Case: ECI
	home.html (Case: ECN
	home.html (Case: ECM
	home.html (Case: ECM =
	home.html (Case: ECM =
	home.html (Case: ECM = !
	home.html (Case: ECM = 5
	home.html (Case: ECM = 50
	home.html (Case: ECM = 500
	home.html (Case: ECM = 500
	home.html (Case: ECM = 500 (
	home.html (Case: ECM = 500 G
	home.html (Case: ECM = 500 Ge
	home.html (Case: ECM = 500 Ge)
	home.html (Case: ECM = 500 GeV
	home.html (Case: ECM = 500 GeV)

	TECIA			2 5
	ESLA	JLU(U)	JLU/NLU(A)	OLIC
Accelerator	S.C.	N.C.	N.C.	N.C. /2-beam
RF freq [GHz]	1.3	5.7	11.4	30
Eacc [MV/m]	22	34	55	150
N(elec) / Bunch [10 ¹⁰] N(bunch) / Beam	2 2820	1.11 72	0.95 95	0.4 154
Bunch spacing [ns] Bunch train length	337 950 µs	2.8 202 ns	2.8 270 ns	0.67 103 ns
Beam Emittance [10-6 m]	10/0.03	3.3 / 0.05	4.5/0.1	2/0.02
x / y beam size at IP [nm] z beam size [mm]	553/5 0.4	318/4.3 0.2	330 / 4.9 0.12	202/2.5
Two-linac length [km] AC power to make RF [MW]	95	16 130	10.5	4.6

SLC had been running an S-band linac (2.9 GHz) at ~ 17 MV/m.

Introduction (Continued)

A few remarks -

- All require multi-bunch beams with ultra-low emittance to be accelerated; so some kind of damping rings is a must.
- All require bunch lengths much shorter than 1 mm to be accelerated in main linacs, because of the very small βy* at IP. Thus, some kind of bunch length compression or a bunch source with short bunch length is a must.
- The required scale of the infrastructure for supporting an LC facility is roughly comparable to that of LEP (or maybe somewhat bigger). It is not too crazy.
- However, the precision that is required in construction + operation of the complex RF systems (beam control systems, also) is far more substantial than any existing accelerator facilities. It may appear crazy to some.
- Despite major technical challenges, the R&D teams worldwide have been making steady progress. No fundamental impossibility of an LC with ECM = 500 -1000 GeV has been proven. So, we keep working.

2A. TESLA

- The low RF losses on the S.C. cavity walls lead to -
 - High conversion eff of AC --> beam power
 - Long RF pulses allow many bunches space wide apart, which means

Head-on collision possible Fast bunch-to-bunch orbit feedback.

- SC choice favors lower RF freq for increased shunt impedance (quite contrary to NC cases), so picked up 1.3 GHz.
 - As an advantage transverse wake is also reduced at lower RF freq.
- SC cavity R&D
 - Steady progress in achieved Eacc (majority > 15 MV/m, many > 20 MV/m) vs Q (3 - 10E10) in 9-cell cavities.
 - "Superstructure" concept (4 x 7-cell cavities fed by a single coupler, rather than 3 x 9 fed by three couplers) for reduced cavity-cavity spacing (better packing factor) and reduced number of coupler components.

	TESLA-500	TESLA-800
acc. gradient [MV/m]	22	35
AC power [MW]	100	160
[sul] slud	950	860
# bunches n _b /pulse	2820	3570
bunch spacing Δt _b [ns]	337	241
rep. rate f _{rep} [Hz]	5	4
N _e /bunch [10 ¹⁰]	2	1.4
$\varepsilon_{\rm x}/\varepsilon_{\rm y}$ (@ IP) [10 ⁻⁶ m]	10 / 0.03	8/0.015
beta at IP β _{x/y} * [mm]	15/0.4	15/0.3
spot size σ_x^*/σ_y^* [nm]	553 / 5	391 / 2.4
bunch length σ _z [mm]	0.3	0.3
beamstrahlung δ_B [%]	3.3	4.7
Disruption D _y	25	32
lumin. L [10 ³⁴ cm ⁻² s ⁻¹]	3.4	4.2

2B. JLC C-band Option

C-band = 5.6 GHz. Eacc ~ 40 MV/m

Fast-track R&D has been possible thanks to relatively straightforward (if not trivial) extrapolation from the S-band technology, plus hard work.

Modulator:

350 kV, 2.6 µs, Eff = 52.4 % achieved New model with Eff > 60 % in design

Klystron:

Solenoid focussing type: 50 MW, 2.5 µs, 50 Hz, 3 tubes so far. #2 model running > 3000 hrs. All successful.

PPM focussing type: First model built in 1999 - 2000. Test to start in July 2000.

RF Pulse Compression:

Disk-loaded SLED (SLED-III)
Gain = 3.25, Eff = 65 % in cold-model.
High-power testing under planning.

Accelerating Structure:

Choke-mode-type for superior HOM suppression. Encouraging result at SLAC ASSET testing. High-power testing required.

Compressed Pulse

3-cell Compressor Cavity (1 meter long)

(Gain 3.4)

Flat top detail.

115

Choke-Mode Cavity

Full Scale Structure
1.8 m long

SiC Loads

RF-BPM

Matsumoto-type Input Coupler

C-band

-band R&L

Wakefield Measurement

Measured Wakefield

C-band PPM Klystron (1999 Model)

Periodic Permanent Magnet Focused
 Permanent Magnet : NdFeB

Designed parameter

Peak output: 50 MW

Efficiency: 50%

μ Perveance : 1.53

Voltage: 350 kV

ulse Width 2.5 usec

C-band Klystron Development

Accumulated operating time is 4,500 hours since April in 1998

I-wave ucture

Traveling-wave output structure

Solenoid Focus (4.6kW)

1.5 µP

Dispenser Cathode (D74.5mm,6.3A/cm²)

TOSHIBA E3746 No.2

53 MW, 2.5 µsec

53 MW, 2.5 µsec, 50 pps, 44%

2C. NLC / JLC X-band Option

X-band = 11.424 GHz. Eacc ~ 55 MV/m

Ambitious extrapolation from the S-band technology.

Beam acceleration and beam-loading compensation already demonstrated (somewhat in a limited scope) in the past at NLCTA (SLAC).

NLC collaboration in US. KEK-SLAC R&D collaboration (ISG) formalized in 1998.

Modulator:

SLAC/KEK parallel efforts
Study semiconductor switches "for the future".

Klystron:

KEK/SLAC parallel efforts
PPM focussing type:
75 MW, > ~ 2μs achieved in 1999.
Design refinment + test assy on-going.

RF Pulse Compression:

SLAC/KEK joint effort DLDS (Delay Line Distribution System) Superior eff. Numerous low-power testing gave encouraging results.

Accelerating Structure:

KEK/SLAC joint effort
Damped-Detuned Structure with Rounded corners
(RDDS)
Precision machining + assy technology at hand.
Wake field meas (ASSET@SLAC) agree with calc.
Stability issues in high Ence operation
(Eace > 50MV/m) are being investigated.

Table of Paremeters for the X-band Main Linacs

Phase-1 Phase-2 500 GeV Final Energy / linac 250 GeV 0.7 - 1.1 E10 Particles / bunch **Bunch Spacing** 2.8 ns 95 Bunches / pulse Pulse repetition rate 120 (- 150?) Hz Effective gradient 55 MV/m Klystron Power 75 MW Klystrons / linac 3200 1600 4800 Structures / linac 2400

- Tentative parameter choices made in 1997 1998 thru SLAC-KEK discussions:
- Same RF system through Phase-1 and 2.
- Increased bunch spacing to 2.8 ns (was 1.4 ns)
 Beam-loading reduction: 28% --> 16 %
 Reduction of unloaded gradient: 85 --> 74 MV/m
- Increased klystron pulse width (was 0.96 μs)
- Adoption of DLDS scheme
 ... leading to reduction of #klystron by 1/3.
- Adoption of Rounded DDS cell design
 ... leading to increased RF -> Beam efficienty (up 6%)

(A)

(B)

Legend

TE₁₀ rectangular waveguide TE₀₁ circular waveguide TE₁₀ / TE₀₁ Transducer

7-96

8196A1

Relationship between the RF Power and Bunch Train

.. NDUCTION MODJLATOR:

SUM MANY LOW VOLTAGE SOURCES INDUCTIVELY

INDUCTION CIRCUIT (1 OF N)

Isolated Gate Bipolar Transistor

Rated: 3.3 kV @ 0.8 kA (DC)

Tested: 2.0 kV @ 1.5 kA (Pulsed)

Future: 5.0 kV @ 2.0 kA (Pulsed)

ASSET (SLAC)

t [ns]

2D. CLIC

- NC structure driven at high-gradient (150 MV/m) 30 GHz
 - Reduced linac length (two-linac length still at 27.5 km even for 3 TeV 150 MV/m).
- RF generation of 30 GHz as the power extracted from a high-intensity, low-energy drive beam (937 MHz NC linac).
 - Considered the most cost-effective for producing multi-TeV beams.
- CTF1 demonstrated the feasibility of TBA concept by 1995 :
 - 76 MW of 30 GHz RF power --> 125 MV/m.
- CTF2 is currently in operation for testing multi-bunch drive beam operation (total 373 nC)
 - Power extracted from drive beam: 27 22 MW
 Power into CAS: 21 17 MW
 Field in CAS: 57 51 MV/m
- CTF3 is under study for testing all major parts of the CLIC RF power scheme.

CLIC Parameters

Beam param. at I.P.	0.5 TeV	1 TeV	3 TeV	5 TeV
Luminosity (10 ³⁴ cm ⁻¹ s ⁻¹)	1.4	2.7	10.0	10.0
Mean energy loss (%)	4.4	11.2	31	37
Photons /electrons	0.7	1.1	2.3	3.2
Coherent pairs per X	700	3 106	$6.8\ 10^{8}$	$1.8 10^{9}$
Rep. Rate (Hz)	200	150	100	50
10° e±/bunch	4	4	4	4
Bunches / pulse	154	154	154	154
Bunch spacing (cm)	20	20	20	20
H/V ε_n (10-8 rad.m)	200/2	130/2	68/2	78/2
Beam size (H/V) (nm)	202/2.5	115/1.75	43/1	31/0.78
Bunch length (µm)	30	30	30	25
Accel.gradient (MV/m)	150	150	150	172
Two linac length (km)	5	10	27.5	40
Power / section (MW)	229	229	229	301
RF to beam effic. (%)	24.4	24.4	24.4	21.3
AC to beam effic. (%)	9.8	9.8	9.8	8.5
AC power (MW)	100	150	300	290

Features of CLIC scheme

The CLIC scheme has two very distinctive features

It accelerates the beam using high frequency (30 GHz) normal-conducting structures operating at high fields (150 MV/m) - this reduces the LENGTH and in consequence, the COST of the linac.

(For 3 TeV - 150 MV/m - two-linac length 27.5 km)

It extracts its RF power from a high-intensity low-energy drive beam believe to be the most cost effective way to produce multi-TeV beams. running parallel to the main linac. This RF power generation scheme we

CLIC Two-Beam Acceleration (TBA) scheme

- CLIC main linac made up from series of 2.23m long two-beam modules one shown below.
- RF power to feed the 30 GHz accelerating structures extracted by special decelerating structures from high-intensity/low-energy drive beam running parallel to main beam.
- Two-beams separated by about 50 cm
- One power extracting structure feeds two main linac accelerating structures.
- Drive beam dumped after extracting about 85 % of its energy.

CLIC TDS Topered Damped Structure

CERN TDS Structure

TLIC RF POWER SOURCE FOR 3 TeV COLLIDER

Test of Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 CLIC TEST FACILITY - CTF 3 - Nominal

Main challenges of CLIC scheme:

- To design a reasonable length beam delivery section for 3 TeV.
- To create and collide beams with very small spot sizes ($\sigma_{X/Y} = 43/1$ nm) at IP.
- To operate physics detectors with collisions every 0.7 ns.
- To extract meaningful physics data with a strong beam/beam interaction ($\delta_{\rm R} \sim 31\%$).
- To generate ultra-small emittances ($\varepsilon_{n \text{ H/V}} \sim 500/10 \text{ nrad.m}$) from damping rings.
- To develop the necessary 30 GHz technology and in particular to build To preserve this emittance in linac in presence of strong transv. wake-fields (W_T ~ f ³)
- Accelerating structures, Power-extracting structures, and BPMs.
- To demonstrate accelerating gradients of 150 MV/m for 130 ns
- To demonstrate feasibility of new DB generation and power production scheme.

3. Beyond Next-Generation LCs

Pulsed heating of accelerating structure surface

A general consensus is that in terms of (suppression of)
dark current capture we may scale

Eacc ~
$$\lambda^{-1}$$
.

However, instantaneous temp rise had better be

for preventing plastic deformation of OFC, also. The typical scaling of ΔT is

So, to keep ΔT below a certain constant, we need to observe

What does this mean?

- We may not be allowed to be too aggressive in pushing OFC structures.
- More Exp data needed (work under way by R.Siemann, et al @ SLAC). SCAC PUB 8070
- Use of "harder" material, more rubust against plastic deformation (such as "glicop") ?

~ 10 mW, CW driving the TE₀₁₂ mode

3b. W-band Technology

80 GHz --> $\lambda = 0.38$ cm

Aiming at reduced power consumption and higher accelerating gradient.

- W-band "sheet-beam" klystron R&D
 - Conceptual studies (SLAC).
- Accelerating structure (mm-wavelength, sub-μm tolerance)
 - LIGA (Deep X-ray lithography) and other micromachining techniques

Fabrication testing (SLAC, TU Berlin, Sandia - Livermore, SRRC-Taiwan)

Plasma-based Accelerator

Inject photons or charged particle beams into plasma and create strong wakefields.

 Some interesting experimental results emerging. (CERN, LBNL, UCLA, USC, SLAC...)

Accelerator Research Department B

W-Band Sheet Beam Klystron Development W-BAND = 806HZ

(heat

applications for accelerator research and radar Develop a high-power mm-wave source

Output Power: Source Parameters:

Operating frequency: Efficiency (PAE): Input Power:

49%

0.5 Watt

Net Gain: Bandwidth (3 dB):

63 dB 91.392 GHz

0.2 GHz

dimensional accuracy: Most probable gain with Jum RMS dimensional accuracy: 58.4 dB

		N-1000(0) Linux Finguery
1323		
		1121

Key Issues:

RF Circuit fabrication - focus of present research effort

Tolerances: ~I µm RMS

Surface quality: 4-16 µ-inch interior finish

Sheet beam generation and transport

Tube instability, oscillation 15 Ampere, 140 kV beam in 0.8x7.2mm channel

FINAL ASSEMBLY

LAYER "A" SKETCH

microwave absorbing layer

PMMA MASK FORMED BY EXPOSURE TO X-RAY

PWFA - PLASMA-BASED WAKEFIELD ACCELERIATION E.157 (EXP SUMMER 99) (0 SLAC

Layout of SLAC-FFTB Plasma Wakefield Experiment

WORK UNDER WAY TOWARDS DETECTIVE THRU PLASMA WAKE HAS BEEN SEEN. (~ 6000 T/m LONGITUDINAL BACES (., P. ACCELEMATION)

3b. Laser Acceleration

Lasers with $\lambda = 1 - 2 \text{ nm}$ $10^{19} \text{ W/cm}^2 \text{ irradiance} \rightarrow 10 \text{ GV/m}$

Arrange two (or more) laser beams in a way to produce longitudinal electric field relative to the beam travel.

- LEAP Project (SLAC, Ginzon, HEPL)
 - Aim at demonstrate laser-driven electron acceleration in a dielectric structure in vacuum. Prep exp studies under way.

Im J/pulse Ti - Saphire Laser

4. Conclusions / Observations

- R&D teams worldwide are making steady progress towards next-generation LCs at this stage of fundamental R&D.
- However, none of the next-generation LC schemes have cleared substantial portion of industralization issues associated with mass production of high-precision RF (and other) hardware components at this point.
- The break-through can occur, hopefully, though extension / expansion of existing test facilities (some may have to be new), which demonstrate the working of a fraction of the real-life RF system (and others, such as DR, collim., FF/IR...).
- A major amount of funding, resources and manpower are required. While being arduous, we should realize they are quite intellectually stimulating tasks.
- It is perhaps worth considering creating a more active network in the HEP community which strongly encourages the mobility of scientists and engineering (particularly, the young ones) across -
 - HEP research
 - Next-generation LC research
 - Basic and applied research in, e.g. W-band, Plasma...

Participation is the keyword,