

Reasons for doing b & c decay physics at the Fermilab Tevatron:

- ◆ Large samples of b quarks are available, with the Main Injector, the collider will produce ~4x10¹¹ b hadrons per 10⁷ sec at $L = 2x10^{32}$ cm⁻²s⁻¹, ⇒ a mean of 2 interactions/crossing, ~1.3 are "inelastic"
- $B_s & \Lambda_b$ and other b-flavored hadrons are accessible for study at the Tevatron.
- ◆ Charm rates are ~10x larger than b rates

Characteristics of hadronic b production

The higher momentum b's are at larger η 's

Main detector challenges

Problems:

- $\sigma_{\rm b}/\sigma_{\rm tot}$ ~ 1/500
- Background from b's can overwhelm "rare" processes
- Large data rate just from b's 1 kHz into detector
- Large rates cause Radiation damage to EM calorimeter; photon multiplicities may obscure signals

Solutions:

- Use detached vertices for trigger and background rejection
- Have excellent charged particle identification & lepton id
- Deadtimeless trigger and DAQ system capable of writing kHz of events to tape
- Use PbWO₄ crystal calorimeter

Summary of required measurements for CKM tests

Physics	Decay Mode	Vertex	K/π	γ det	Decay
Quantity		Trigger	sep	·	time σ
$sin(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$sin(2\alpha)$	$B^{o} \rightarrow \pi^{+}\pi^{-} \& B_{s} \rightarrow K^{+}K^{-}$	\checkmark	\checkmark		\checkmark
$\cos(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$sign(sin(2\alpha))$	$B^{o} \rightarrow \rho \pi \& B^{o} \rightarrow \pi^{+} \pi^{-}$	\checkmark	\checkmark	\checkmark	
$\sin(\gamma)$	$B_s \rightarrow D_s K^-$	\checkmark	\checkmark		\checkmark
$\sin(\gamma)$	$B^{o} \rightarrow \overline{D}^{o} K^{-}$	\checkmark	\checkmark		
$\sin(\gamma)$	$B \rightarrow K \pi$	\checkmark	\checkmark	\checkmark	
$sin(2\chi)$	$B_s \rightarrow J/\psi\eta'$, J/ψη		\checkmark	\checkmark	\checkmark
$sin(2\beta)$	$B^{o} \rightarrow J/\psi K_{s}$				
$\cos(2\beta)$	$B^{o} \rightarrow J/\psi K^{*} \& B_{s} \rightarrow J/\psi \phi$				
X _s	$B_s \rightarrow D_s \pi^-$	\checkmark	\checkmark		\checkmark
$\Delta\Gamma$ for B_s	$B_s \rightarrow J/\psi\eta', K^+K^-, D_s\pi^-$	\checkmark	\checkmark	\checkmark	✓ ▲

The BTeV Detector

- Pixel Detector (Inside the beam pipe)
- Dipole Magnet
- Magnet Coils
- Beam Pipe

- Straw-chambers (exterior) and single-sided silicon-strips (interior) RICH
- PbWO₄ EM calorimeter
- Muon Detector

The Pixel Detector

- Pixels necessary to eliminate ambiguity problems with high track density; Essential to our detached vertex trigger
- Crucial for accurate decay length measurement
- Radiation hard

Low noise

Pixel Test Beam Results

 Solid curve is a piece wise linear fit to a simulation based on a detailed Monte Carlo

Ring Imaging CHerenkov

Goal is π/K/p separation from 3 - 70 GeV/c
 Use C₄F₁₀ gas radiator and hybrid photodiodes (possibly also aerogel radiator)

Particle Identification

Excellent P. I. D.

•Rings from $B^{o} \rightarrow \pi^{+} \pi^{-}$, & rest of crossing

9

The PbWO₄ EM Calorimeter

Crystal technology developed by CMS. They will use 80,000 crystals

- Our baseline uses similar size crystals as CMS endcaps 26 x 26 x 220 mm³, total of 2x11,850
- Crystals are radiation hard
- Scintillation is fast, 99% of light emitted < 100 ns</p>
- We will use phototube readout since we are not in a magnetic field

Ex: Efficiency for $B \rightarrow K^* \gamma$

11

The Muon Detector

- Identifies muons
- Triggers on di-muons in level 1; provides a method of checking detached vertex triggering efficiency
- Design: Two torroids with three sets of position detectors

Fundamentals: Decay Time Resolution

Excellent decay time resolution

- Reduces background
- Allows detached vertex trigger
- The average decay distance and the uncertainty in the average decay distance are functions of B momentum:
 - $< L > = \gamma \beta c \tau_B$
 - $= 480 \ \mu m \ x \ p_B/m_B$

Pixel Trigger Overview

•Idea: Finds the primary vertex and identifies tracks which miss it, and calculates the significance of detachment, $b/\sigma(b)$.

• For a requirement of at least 2 tracks detached by more than 6σ , we trigger on only 1% of the beam crossings and achieve the following efficiencies for these states after the other analyses cuts:

State	efficiency(%)	state eff	e efficiency(%)		
${ m B} \longrightarrow \pi^+\pi^-$	63	$B^{o} \longrightarrow K^{+}\pi^{-}$	63		
$B_s \rightarrow D_s K$	71	$B^{o} \rightarrow J/\psi K_{s}$	50		
$B^- \rightarrow D^0 K^-$	70	$B_s \rightarrow J/\psi K^*$	68		
$B^- \rightarrow K_s \pi^-$	27	$B^{o} \rightarrow \rho^{o} \pi^{o}$	56		

 Full GEANT simulations including pattern recognition done for trigger

DAQ Scheme

The Status of BTeV

BTeV submitted a preliminary technical design report in May of 1999 and a full proposal in May of 2000.

BTeV is an approved experiment,

Fermilab E897.

More information can be found at

http://www-btev.fnal.gov