Excited leptons and leptoquarks at LEP

M.A. Falagan

CIEMAT

XXXth International Conference on High Energy Physics

July 27 - August 2, 2000, Osaka, Japan

- Excited leptons
- Leptoquarks
- Summary

- Excited fermions are expected in composite models. These models could explain the family problem and make the fermion masses calculable parameters.
- A well studied model, assumes spin 1/2, and isospin doublets with left and right handed components.

$$L^* = \left(\begin{array}{c}\nu^*\\\ell^*\end{array}\right)_L + \left(\begin{array}{c}\nu^*\\\ell^*\end{array}\right)_R$$

• They can be produced in pairs or singly.

- The cross section for pair production is determined by the charge and the isospin. It depends only on \sqrt{s} and m_* .
- The cross section for single production depends on the effective couplings f and f' and m_* .
- An excited lepton decays immediately into a standard lepton plus a gauge boson (γ , W or Z).

Pair produced excited leptons have been extensively searched for in LEP, in many different signatures, corresponding to the dominant decay modes.

$\sqrt{s} \sim 200 \text{ GeV}$	L3		OPAL	
Signal	Data	SM	Data	SM
$e^*e^* \rightarrow e\gamma e\gamma$	1	0.8	2	1.4
$\mu^*\mu^* o \mu\gamma\mu\gamma$	1	0.5	0	0.7
$\tau^* \tau^* \to \tau \gamma \tau \gamma$	0	0.2	3	2.6

Data and SM expectation always agrees \Longrightarrow

Excited	95% CL Mass Limit (GeV)				
Lepton	f = f'		f = -f'	Coup. Indep.	
	L3	OPAL	L3	L3	
e*	100.1	100.1	96.2	96.0	
μ^*	100.3	100.1	96.2	96.2	
$ au^*$	99.9	100.0	96.2	94.9	
$ u_{ m e}^* $	99.3	99.5	99.5	98.5	
$ u_{\mu}^{*}$	99.4	99.5	99.5	98.5	
$\nu_{ au}^{'*}$	93.9	91.9	99.4	92.7	

lower mass limits are set

Candidate to e^*e^* production. L3 $\sqrt{s} = 200 \text{ GeV}$

m(e_1, γ_2) = 60 GeV m(e_2, γ_1) = 59 GeV

Run # 772501 Event # 3103 Total Energy : 185 GeV

Experimental distributions from the $\ell\ell\gamma$ selection

Experimental distributions from the $\ell\nu W$ selection

FROM SINGLE PRODUCTION SEARCHES

No excess in data is seen

Limits are derived on $f_0/\Lambda = \sqrt{(f^2 + f'^2)/2}/\Lambda$ independently of the coupling assumption f/f'

Including data at higher energies (192 – 202 GeV) and considering two particular scenarios (f = f' and f = -f') improved limits are derived on the coupling constant f/Λ

Similar limits are derived by DELPHI and OPAL

The search for excited electrons is extended above the kinematical limit for single production $(m_* = \sqrt{s})$

Assuming the coupling strength of the $e^*e\gamma$ vertex equal to the standard $ee\gamma$ vertex, a mass limit to e^* is derived from the differential cross section for the process $e^+e^- \rightarrow \gamma\gamma(\gamma)$

OPAL $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) \Longrightarrow m_* > 316 \text{ GeV}$ at 95% C.L.

Leptoquarks are new bosonic fields which mediate interaction between quark and leptons. They carry baryon and lepton number and therefore decay into a pair lepton - quark.

They have color, electric charge and weak isospin, and therefore couple to the standard gauge bosons.

Assuming dimensionless interactions with Standard Model fermions and gauge invariance, there could be 9 scalar states **S** and 9 vector states **V**, grouped in two singlets, two doublets and a triplet of isospin.

Pair produced leptoquarks have been searched for in the Opal experiment at $\sqrt{s} = 189 - 202$ GeV in all their decay channels

OPAL preliminary Selection: LQ LQ => jet jet nu nu

No excess in Data \implies Mass limits are set on scalar leptoquarks

95% C.L. Mass limits (GeV)						
LQ	Q_{em}	$Br(LQ \rightarrow \ell q)$	1^{st} gen.	2^{nd} gen.	3^{rd} gen.	
S ₀	-1/3	[0.5, 1.]	44.2*	44.2*	41.4*	
\tilde{S}_0	-4/3	1.	94.7	96.4	95.2	
$\begin{array}{c c} & -2 \\ S_{1/2} & -5 \end{array}$	-2/3	[0., 1.]	88.5	88.9	89.4	
	-5/3	1.	95.6	97.0	96.1	
Ĩ	1/3	0.	83.3	83.3	83.3	
$ v_{1/2} $ -	-2/3	1.	90.5	94.6	93.1	
	2/3	0.	91.7	91.7	91.7	
S_1	-1/3	0.5	44.2*	44.2^{*}	43.2*	
	-4/3	1.	96.0	97.4	96.5	

(*) Limits from LEP1

Singly produced leptoquarks have been searched for in the Opal (189 GeV) and Delphi (192 - 202 GeV) experiments.

	OPAL		DELPHI	
Signal	Data	SM	Data	SM
$e^+e^- \rightarrow e \neq LQ \rightarrow e \neq e q$	21	22	6	6
$e^+e^- \rightarrow e q LQ \rightarrow e q \nu q$	7	9	5	4

No excess in Data \Longrightarrow

assuming coupling parameter to fermions $\lambda = \sqrt{4\pi\alpha_{em}}$

mass limits are set on first generation scalar and vector leptoquarks

95% C.L. Mass limits (GeV) on scalar LQ

Leptoquark	Q_{em}	$Br(LQ \rightarrow \ell q)$	OPAL	DELPHI
C	1/9	0.5	158	180
\mathcal{D}_0	0 / I —	1.	163	180
\widetilde{S}_0	-4/3	1.	149	158
C	-2/3	1.	121	155
$\mathfrak{S}_{1/2}$	-5/3	1.	164	180
Ĩ	1/3	0.		
$\mathcal{O}_{1/2}$	-2/3	1.	121	155
	2/3	0.		
S_1	-1/3	0.5	158	180
	-4/3	1.	156	158

• Lower mass limits are also set on vector leptoquarks

Leptoquark	Q_{em}	$Br(LQ \rightarrow \ell q)$	OPAL	DELPHI
$V_{1/2}$	-1/3	1.	176	188
	-4/3	1.	152	168
V	2/3	0.		
$V_{1/2}$	-1/3	1.	176	188
Υ.	<u> </u>	0.5	149	171
	- <i>2</i> /0	1.	151	170
\tilde{V}_0	-5/3	1.	177	185
	1/3	0.		
V_1	-2/3	0.5	149	171
	-5/3	1.	182	185

95% C.L. Mass limits (GeV) on vector LQ

The study of $\sigma(e^+e^-) \rightarrow q\bar{q}$ extends the sensitivity to leptoquarks above the kinematical limit for single production $(m_{LQ} = \sqrt{s})$

The t-channel LQ exchange diagrams would be an additional contribution to hadron production in LEP

Assuming coupling parameter to fermions $\lambda = \sqrt{4\pi\alpha_{em}}$ mass limits are set on scalar and vector leptoquarks

Leptoquark	L3	ALEPH
$S_0(L/R) \rightarrow eu$	413 / 322	380 / 56
$\tilde{S}_0(R) \to ed$	84	128
$S_{1/2}(L/R) \rightarrow e\bar{u} / e\bar{u}, e\bar{d}$	64 / 117	120 / 99
$S_1(L) \rightarrow eu, ed$	208	319
$V_0(L/R) \rightarrow e\bar{d}$	584 / 136	618 / 137
$\tilde{V}_0(R) \to e\bar{u}$	288	331
$V_{1/2}(L/R) \rightarrow ed / eu, ed$	202 / 183	144 / 169
$\tilde{V}_{1/2}(L) \rightarrow eu$	145	105
$V_1(L) \rightarrow e\bar{u}, e\bar{d}$	394	515

- Excited leptons and leptoquarks have been searched for in pair production, single production and indirectly at LEP.
- No evidence for their existence has been found.
- From pair production searches, lower limits on the mass of excited leptons and leptoquarks have been set at the 95% confidence level.
- From single production and indirect searches upper limits to the couplings as a function of the mass have been derived.
- With the current LEP run at √s = 208 GeV the range of discovery potential has been extended around 3 GeV for pair production and 6 GeV for single production. In case no signal appears, limits will improved.