Alessandra Caner - CERN/CMS

Miggs Prospects at the LHC

- SM Higgs searches
- MSSM Higgs searches
- Measurement of Higgs parameters

Among primary LHC goals:

-- look for SM Higgs boson over

previous
→ ~ 100 GeV < m_H ≤ 1 TeV

theoretical upper bound

- -- look for MSSM Higgs bosons over all parameter space
- -- be sensitive to alternative scenarios
- → high √s and L, general-purpose detectors

¥ Main asset: large signal rates

However in many cases:

-- Backgrounds much larger → S/B <<1

-
$$\Gamma_{\rm H} << \Gamma_{\rm detector}$$

- -- excellent detector performance needed
- Higgs searches used as benchmark for ATLAS and CMS detector design

Higgs detection possible in large variety of final states: γ , e / μ / τ , b-jets, E_T^{miss} , forward jets, top-quarks, SUSY particles, etc.

Framework

•
$$L_{peak} \approx 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$$
 2005-2008 (low L)
 $L_{peak} \approx 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 2008 \rightarrow (high L)

→
$$\int Ldt \approx 30 \text{ fb}^{-1} / \text{expt}$$
 after 3 years at low L
 $\int Ldt \approx 100 \text{ fb}^{-1} / \text{expt}$ after 1 year at high L

High L: ~20 soft interactions per crossing (pile-up)

- PYTHIA 5.7
- Full detector simulation (GEANT)
 to determine efficiencies, background rejections,
 resolutions, tails, etc.
- Only uncontroversial channels considered:
- -- background under control (physics, trigger, detector)
- -- ≥ 4-5 σ significance per experiment per channel
- no hopeless channels (e.g. multijet final states):

SM Higgs production at LHC

- $gg \rightarrow H$: K=1.6–1.9 (not included)
- residual uncertainties on NLO cross-sections
 (PDF, NNLO, etc.) ≤ 20% (except ttH)

Main search channels at LHC

Large QCD backgrounds:

- e.g. $\sigma (H \rightarrow b\overline{b}) \approx 20 \text{ pb}$ direct production, $m_H = 120 \text{ GeV}$ $\sigma (b\overline{b}) \approx 500 \text{ µb}$
- → no hope to trigger / extract fully hadronic final states
- \rightarrow look for final states with ℓ , γ ($\ell = e, \mu$)

$$m_H < 2 m_Z$$
: $t\bar{t}H \to lb\bar{b} + X$, $H \to \gamma\gamma$

$$H \rightarrow ZZ^* \rightarrow 4\ell, H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$$

$$\underline{m_H} \ge 2 \ \underline{m_Z}$$
: $H \to ZZ \to 4\ell$ (gold-plated)

$$\begin{array}{l} H \rightarrow ZZ \rightarrow \ell\ell \ \nu\nu \\ H \rightarrow ZZ \rightarrow \ell\ell \ jj \\ H \rightarrow WW \rightarrow \ell\nu jj \end{array} \right\} \quad \begin{array}{l} m_H^{>} 300 \ GeV \\ \text{forward jet tag} \end{array}$$

Detector performance is crucial: b-tag, ℓ/γ E-resolution, γ/j separation, E_T^{miss} resolution, forward jet tag, etc.

$$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$$
 $m_H \le 130 \text{ GeV}$

- $\sigma \times BR \approx 300 \text{ fb}$
- Complex final state: $H \to b\overline{b}$, $t \to bjj$, $t \to b\ell v$

 $\ell = e$, μ for trigger and background rejection

- Main backgrounds:
 - -- combinatorial from signal (4b in final state)
 - -- Wjijiji, WWbbjj, etc.
 - -- ttjj (dominant, non-resonant)

reduced by reconstructing both top quarks

→ b-tagging is crucial

ATLAS, full simulation

2D b-tag (used here): $\varepsilon_b = 50\%$ (60 %) R_j (uds)=100 at high (low) L

3D b-tag: R_j is ~ 2 larger for same ε_b

Background (~60% from ttbb) can be measured with ttjj
with j anti b-tagged

tībb : good agreement

PYTHIA- CompHEP (ME)

m _H (GeV)	100	120
S	140	80
S/B	0.4	0.25
S/√B	7.5	4.5
S/√B 30 fb-1 ATLAS + CMS	7.0	5.0

1 experiment 100 fb⁻¹

Conclusions:

- -- 5σ discovery at low L for 100 ≤ m_H ≤ 120 GeV ATLAS + CMS
- -- complementary to $H \rightarrow \gamma \gamma$
- -- large coverage in MSSM
- -- allows measurement of top Yukawa coupling
- -- crucial detector performance : b-tagging

Overall discovery potential for SM Higgs

 $m_H < 180~GeV$: many complementary channels ($\gamma\gamma$, bb, 2ℓ , 3ℓ , 4ℓ , etc.)

 $m_H > 180 \, \text{GeV}$: discovery is straightforward with gold-plated $H \to ZZ \to 4\ell \, (S/B > 5)$. Complemented by $H \to WW \to \ell \nu \, jj$, $H \to ZZ \to \ell \ell \nu \nu$, $\ell \ell \, jj$ (forward jet tag)

> 1 channel observable over most of range → robustness, measurement of couplings

SM Higgs boson can be discovered at $\approx 5 \, \sigma$ after ≈ 1 year of operation (10 fb⁻¹/ experiment) for $m_H \le 150 \, \text{GeV}$ Discovery faster for larger masses Whole mass range can be excluded at 95% CL after ~ 1 month of running at $10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$.

Results are conservative:

- -- no K-factors
- -- simple cut-based analyses
- -- conservative assumptions on detector performance
- -- channels where background control is difficult not included e.g. WH → ℓνbb (large systematics)

MSSM HIGGS searches: h, H, A, H±

Large variety of channels:

e.g.
$$-h \rightarrow \gamma \gamma$$
, $t\bar{t}h \rightarrow t\bar{t}b\bar{b}$, $ZZ^{\circ \circ} \rightarrow 4\ell$ also in SM $-A/H \rightarrow \mu\mu$, $\tau\tau$, $t\bar{t}$, $H^{\circ} \rightarrow \tau\nu$, cs, $t\bar{b}$ typical of MSSM $-H \rightarrow hh$, $A \rightarrow Zh$ if SUSY particles $-\chi^{\circ}$, $\Phi h \chi^{\circ}$, $\Phi h \chi^{\circ}$, accessible

Note:

- suppression/absence of WWH, ZZH,
 WWA, ZZA couplings
- WWA, ZZA couplings
 strong enhancement of bbA, bbH couplings for large tanβ
- \rightarrow A/H \rightarrow $\mu\mu$, $\tau\tau$ accessible

compared to SM

2 steps:

- + SUSY particles contribute

Masses

 h mass increases with m_A, tanβ, top mass, stop mass, stop mixing

e.g. :

m_h < 115.5 GeV → MSSM ~fully covered by LEP

However:

- -- theoretical uncertainties : $\Delta m_h \approx 3 \text{ GeV}$ -- $m_{top} = 180 \text{ GeV} \text{ (+ } 1\sigma \text{) : } m_h < 118.4$ -- maximal mixing : $m_h \leq 130 \text{ GeV}$
- -- more general SUSY models : m_h < 205 GeV (Quiros and Espinosa, CERN-TH/98-292)

beyond LEP sensitivity

- A, H, H[±] heavier and ~ degenerate for m_A > 200 GeV
- 2-loop calculations for masses and couplings
 (Carena et al., Phys. Lett. B355, 1995)
 - Results are 5σ discovery contours on m_A, tanβ plane for m_{top} =175 GeV, M_{SUSY} = 1 TeV, max mixing (LEP curves: P. Janot)

mA > 100 GeV:

- -- h mass close to max value (~ 130 GeV)
- -- h behaves as SM Higgs -- SM production and decay modes

m_A < 100 GeV:

- -- h mass decreases
- BR (h $\rightarrow \gamma \gamma$) and tth production suppressed
- -- large tanβ: bbh production enhanced -> bb μμ channel observable

Robust coverage:

- different production mechanisms : gg → h (loops), Wh, tth
- different decays: $h \rightarrow \gamma \gamma$ (loops), $h \rightarrow b\overline{b}$

A and H bosons

m_A > 200 GeV: A and H are ~ degenerate

- Large tan β : $b\overline{b}H$, $b\overline{b}A$ strongly enhanced e.g. $\sigma(MSSM)/\sigma(SM) \approx 5000 \tan\beta = 30$, m = 300 GeV
 - \Rightarrow H/A \rightarrow $\tau\tau$, $\mu\mu$ observable and cover large part of parameter space
- Small tanβ: large number of channels
 → measurement of many couplings including Hhh, AZh

$A/H \rightarrow \tau\tau \rightarrow h^+v h^-v$:

Provides best reach for large m_A.

Signature: two stiff opposite-sign isolated tracks and missing transverse energy.

Main challenge: reject QCD jet background (already at trigger!).

Feasible for $m_A > 300 \text{ GeV}$: hadrons have high p_T , E_T^{miss} is large, etc..

 \rightarrow R_{OCD} ~ 10¹⁰ \rightarrow QCD background << 10% (tt + Z/ γ * \rightarrow $\tau\tau$)

Events selected as: $E_t^{jet} > 60 \text{ GeV}$ $p_t^h > 40 \text{ GeV}, \Delta \phi(jj) < 175^\circ, E_t^{miss} > 40 \text{ GeV}$

In addition b-tag improves S/B

Mass resolution ~10%

More study (trigger, background) needed m_A < 300 GeV. Additional tools: calorimeter isolation, impact parameter

H[±] bosons

• $m_{H\pm} < m_{\tau}$: $t \rightarrow b \ H^+ \ (H^+ \rightarrow \tau \nu)$ competes with $t \rightarrow bW$ \rightarrow count excess of τ s in $t\bar{t}$ final states $3000 \ W \rightarrow \tau \nu$ $1500 \ H^{\pm} \rightarrow \tau \nu \quad m=130 \ GeV \quad tan\beta=5$ $4000 \ fake \ \tau \quad from \ W \rightarrow jj$ $t\bar{t}$ events, $30 \ fb^{-1}$

 $\tan\beta \le 1.5 : H^{\pm} \rightarrow cs$

• $m_{H\pm} > m_{\tau}$: - $gb \rightarrow H^{\pm} t \rightarrow tb t$ - $gb \rightarrow H^{\pm} t \rightarrow \tau v t$

$$gb \rightarrow H^{\pm} t$$
 tb

Both top quarks reconstructed Background from ttb plus combinatorial from signal

$$gb \rightarrow H^{\pm} t$$
 tv

Backgrounds: W+ jets, tt, Wtb, QCD jets

- $-p_{\rm T}(\tau\text{-jet}) > 100 \text{ GeV}$
- $-E_{T}^{miss} > 100 \text{ GeV}$
- only one reconstructed top
- jet veto
- τ-polarisation $(p^{\pi}/E^{\tau} > 0.8)$

 $(p^{\pi}/E^{\tau} > 0.8)$ Transverse mass $\{\tau\text{-jet}, E_{t}^{\text{miss}}\}$ for background (dominated by $t\bar{t}$) is $< m_{W}$ (if perfect resolution) resolution)

Assuming SUSY particles are heavy

Not all channels shown

- Plane covered at low L (30 fb⁻¹) • Main channels : $h + \gamma \gamma$, $b\bar{b}$, A/H + $\mu\mu$, $\tau\tau$, H[±] + $\tau\nu$
- Two or more Higgs can be observed over most of parameter space → disentangle SM / MSSM

Uncertainties: $\Delta m_A \approx \pm 30 \text{ GeV}$ (e.g. from $\Delta m_h \sim 3 \text{ GeV}$), $\Delta \tan \beta \approx \pm 0.7$ Impact of mixing on couplings studied for minimal mixing but not for all possible mixing (evolving theory predictions)

- 4 Higgs observable
- 3 Higgs observable
- 2 Higgs observable
- 1 Higgs observable

Here:

- -- only hobservable
- -- h ≈ SM Higgs
- → disentangle SM /MSSM ?

Measurement of the Higgs mass

MSSM Higgs	Δm/m (%)	300 fb ⁻¹
h, A, H $\rightarrow \gamma \gamma$	0.1-0.4	
$H \rightarrow 4 \ell$	0.1-0.4	
$H/A \rightarrow \mu\mu$	0.1-1.5	
$h \rightarrow bb$	1-2	
$H \rightarrow hh \rightarrow bb \gamma\gamma$	1-2	
$A \rightarrow Zh \rightarrow bb \ell\ell$	1-2	
$H/A \rightarrow \tau\tau$	1-10	

Assumed E-scale uncertainty 1% (g/leptons). Target 0.2% (Z decays)

Measurement of the Higgs production rates (σ·BR)

Typical precisions: 7% -20% (vs m and MSSM parameters)
Dominant errors: statistics, luminosity (5-10%), background
systematics

Measurement of couplings and branching ratios

- Can be obtained from rate measurements if σ (pp → H+X) known from theory
- Otherwise: measure ratios of rates for different channels
 → ratios of couplings → many constraints of theory
- Here only few examples (preliminary)

From	One measures	Error (300 fb-1)
$\frac{(t\bar{t}H + WH) \rightarrow \gamma\gamma + X}{(t\bar{t}H + WH) \rightarrow b\bar{b} + X}$	$\frac{BR (H \to \gamma \gamma)}{BR (H \to b \overline{b})}$	≈ 15 % (*) 80-120 GeV
$\frac{H \to \gamma \gamma}{H \to 41}$	$\frac{BR (H \to \gamma \gamma)}{BR (H \to ZZ^*)}$	≈ 7 % 120-150 GeV
$\frac{t\bar{t}H \rightarrow \gamma\gamma, b\bar{b}}{WH \rightarrow \gamma\gamma, b\bar{b}}$	$\left(\frac{t\bar{t}H}{WWH}\right)'$	≈ 15 % (*) 80-120 GeV
$\frac{H \to ZZ(*) \to 4\ell}{H \to WW(*) \to \ell \nu \ell \nu}$	$\left(\frac{ZZH}{WWH}\right)^3$	≈ 10 % 130-190 GeV

(*) also in MSSM for m_A > 200 GeV

- -- Error dominated by statistics in many cases.
- -- No theoretical error included (e.g. different K-factors for ttH/WH)
- Many other possibilities under study.
 E.g. WW/ZZ fusion qqH → qq ττ gives access to
 H-fermion couplings (D. Zeppenfeld et al., hep-ph/0002036)

Measurement of Higgs width

 $\frac{\text{Direct measurement}}{\text{for m}_{\text{H}} > 200 \text{ GeV } (\Gamma_{\text{H}} > \Gamma_{\text{detector}} \text{ in SM})}$

Indirect measurement at lower masses by measuring cross-sections (hence couplings) for $qq \rightarrow qqH$ with $H \rightarrow \gamma\gamma$, $\tau\tau$, WW (Zeppenfeld et al.)?

MSSM Higgs bosons: too narrow for direct measurements, except $A,H \rightarrow \mu\mu$ for large $tan\beta$

Conclusions

LHC prospects for Higgs Physics

- SM Higgs can be detected in full mass range after 2 years of low luminosity run time (and after understanding of detectors!)
- MSSM sector should be fully explored. Two or more Higgs particles observable in many cases.
- Precice measurements of Higgs mass (0.1%-1%), width (<<10% m_H> 250 GeV), couplings (15-20%) achievable.
- -Large number of accessible channels demonstrate sensitivity of ATLAS and CMS to large variety of signatures --> potential also for other scenarios
- Higgs discovery at the LHC will provide interesting clues on the question "what's next"
- A light Higgs (m<130) will be a strong clue for existence of SUSY
- A heavier Higgs (M>200) will be a strong clue for the existence of new interactions. Most SUSY model would be ruled out
- "Higgs" not observed.... we have to think again