CP violations in Lepton Number Violation Process and Neutrino Oscillations

K. Matsuda, N. Takeda and T.Fukuyama (Ritsumeikan Univ.)

H. Nishiura

(Junior College of Osaka Institute of Technology)

- 1. Restriction by \bigcirc and \triangle
- 2. Examples
- 3. Summary

[ICHEP2000] 28 July 2000

Restriction by \bigcirc and \triangle

p Complex mass triangle -

(1) The decay ratio of $(\beta\beta)_{0\nu}$ is proportional to the averaged mass. The averaged mass is given as follows:

$$\langle m_{\nu} \rangle = ||U_{e1}|^{2} m_{1} + |U_{e2}|^{2} m_{2} e^{2i\beta} + |U_{e3}|^{2} m_{3} e^{2i(\phi-\delta)}|$$

$$\equiv ||U_{e1}|^2 \widetilde{m}_1 + |U_{e2}|^2 \widetilde{m}_2 + |U_{e3}|^2 \widetilde{m}_3|$$

$$= |\widetilde{m}_1 + |U_{e2}|^2 (\widetilde{m}_2 - m_1) + |U_{e3}|^2 (\widetilde{m}_3 - m_1)|$$

$$\equiv |\widetilde{m}_{k_{\nu}}| \le 0.2 [eV] \equiv \langle m_{\nu} \rangle_{max}$$

$$0 \le |U_{e2}|^2 + |U_{e3}|^2 = 1 - |U_{e1}|^2 \le 1$$

$$(U_{e1} = |U_{e1}|, U_{e2} = |U_{e2}|e^{i\beta}, U_{e3} = |U_{e3}|e^{i(\phi-\delta)} = |U_{e3}|e^{i\phi'})$$

The overlap each other! and

2. Examples

Constraints on CP phases

- (2) Using the graphical representation, even if the upper limit, $\langle m_{\nu} \rangle_{max}$, is only obtained, we can easily derive constraints on the \mathscr{C} phases.
- (3) In order that the triangle can overlap with the circle whose radius is $(m_v)_{max}$, the P phases must satisfy the following condition.

 $|\arg(\widetilde{m}_j/\widetilde{m}_i)| \geq \alpha_{ij}$

which is independent of the mixing elements.

The allowed condition.

(4) In order that the triangle can overlap with the circle whose radius is \(\frac{m_v}{max} \), the \(\mathcal{P} \) phases must satisfy the following condition.

$$\alpha_{ij} \leq |\arg(\widetilde{m}_{i}/\widetilde{m}_{i})|$$

$$\Rightarrow \alpha_{12} \leq |2\beta| \qquad \alpha_{13} \leq |2\rho'| \qquad \alpha_{23} \leq |2\beta - 2\rho'|$$

$$\left(\alpha_{ij} \equiv \cos^{-1} \frac{\langle m_{\nu} \rangle}{m_i} + \cos^{-1} \frac{\langle m_{\nu} \rangle}{m_j} \right)$$

which is independent of the mixing elements.

In the white area, the triangle can not overlap with the circle.

Relation between the triangle and (my)-

(5) The mixing elements $|U_{ei}|$ are expressed as the ratios of the heights from vertices $\widetilde{m_i}$ separeated by $\widetilde{m_v}$.

9

3. Summary

- (i) We have introduced the graphical representation of CP effects in the lepton # violation process.
- (ii) By using our graphical representation, &P phases can be constrained, easily.
- (iii) By combining the data of ν oscillation, the constraint becomes more severe.

