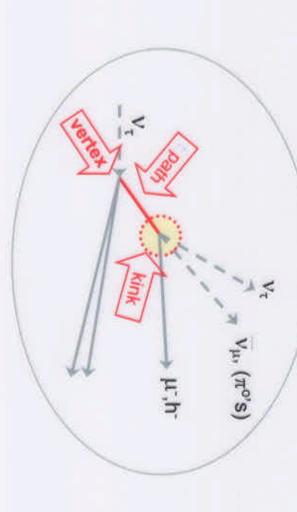
Recent Results from the CHORUS Search for v_µ→v_τ Oscillation

Masahiro Komatsu

Nagoya University, Japan

ICHEP 2000 - Osaka, Japan - July 28

Outline


- The CHORUS experiment
- Experimental layout and analysis
- Results from the "Phase I" full data analysis
- Prospects for the "Phase II" analysis

The CHORUS experiment

- Search for v_{τ} appearance on a "pure" v_{μ} beam
- High design sensitivity $P(\nu_{\mu} \rightarrow \nu_{\tau})=10^{-4}$ for δm²≈1-10eV² (relevant for cosmology & DM)
- A ν_{τ} is detected observing the τ production (DONUT ν_τ CC interaction) vertex in an active nuclear emulsion target in a CC interaction and its subsequent decay

The Chorus \upsilon "signature"

- The \(\tau \) lepton is identified by the three-fold simultaneous observation of:
- the neutrino CC interaction vertex
- the short τ^- path, $c\tau=87\mu\text{m}$, $\gamma\sim0(10)$
- i the τ⁻ decay topology: kink

Electronic detector reconstruction Analysis Strategy

 pre-selection of events and tracks to reduce the scanning load

Event location in emulsion

 location of tracks in the interface emulsion sheets and follow-up to the interaction vertex (Scanback)

Kink finding

Several "automatic" algorithms → confirmation by operator eye-scan

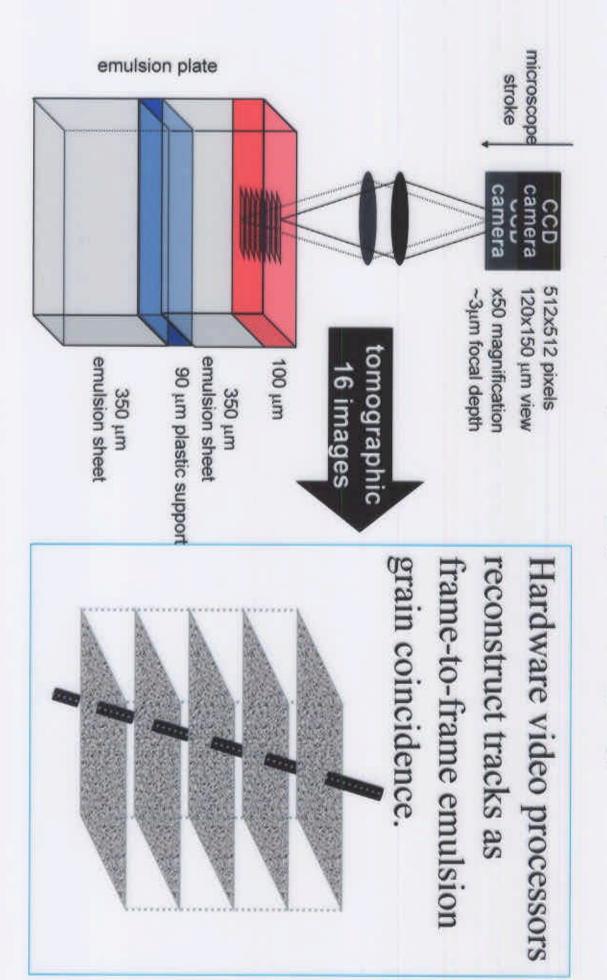
Post-scanning analysis

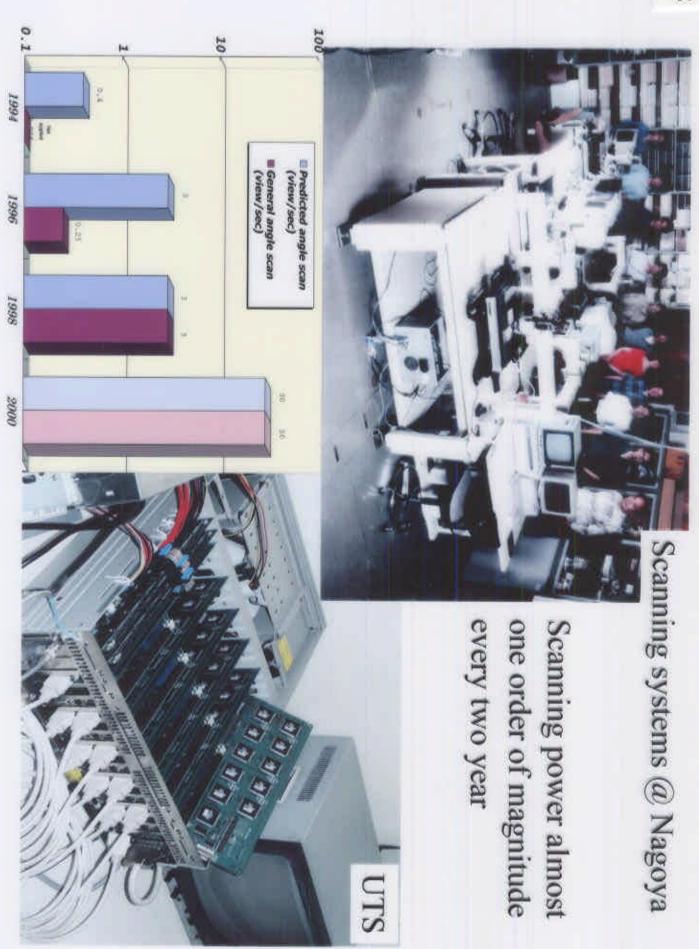
Kinematic study, kink Pt cut, precise momentum measurement with ET

Detection Technique

- 0.8 t emulsion as active neutrino target
- 4 stacks of 36 plates perpendicular to the beam
- A µvertex with ~μm resolution, 300 3D

The scintillating fiber tracker

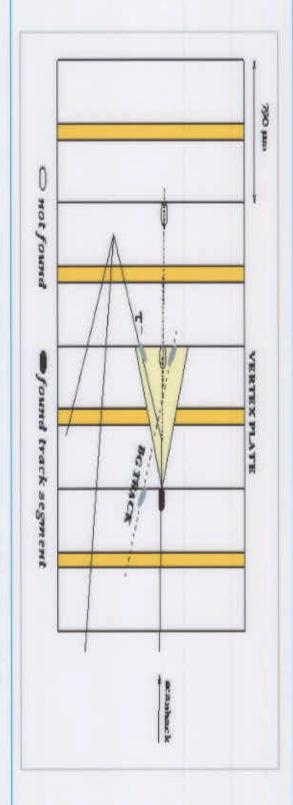

reconstructs the primary vertex, tracks leaving the target and extrapolates back to emulsion: 160 μ m resolution, σ_{θ} =3mrad


emulsion target (4 stacks)

8 fiber trackers interface emulsions planes

Automatic Emulsion Data Taking

(pioneered by the Nagoya Chorus group)



Kink Finding (Parent Search)

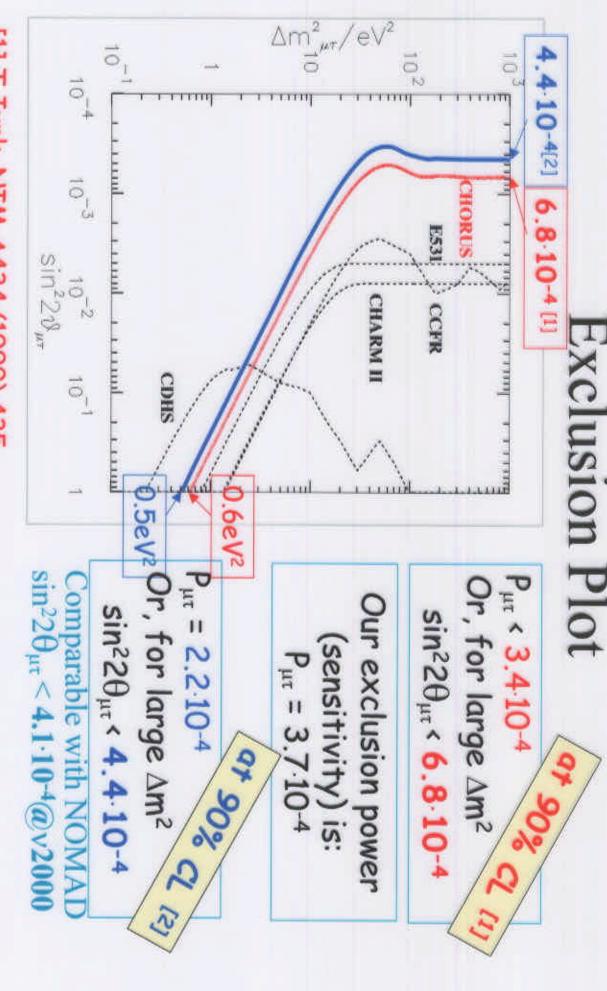
(Large Angle-Long Path kinks)

segments in a cone of width = 1/P(GeV/c)100 µm most upstream of the vertex plate are searched for all track

- Segments with small impact parameters with the follow-up track are candidates track parent
- → Kink signature
- → Manual scanning measurements

Data flow

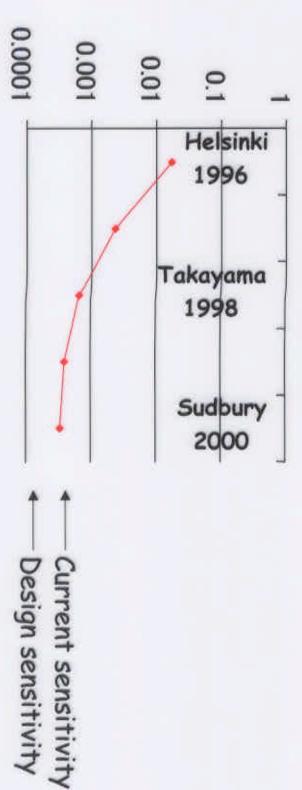
	Protons on target	5.06 1019
	Good emulsion	~93%
	Emulsion triggers	2,305 K
	Events with 1 negative muon and vertex predicted in emulsion	713,000
	P _{muon} < 30 GeV/c and angular cuts	477,600
	Events scanned	355,395
T _E	Vertices located and kink search	143,742
	Events selected for eye-scan	11,398
	Kink candidates after eye-scan	0
	Event with vertex predicted in emulsion 1 negative track with P[-20,-1] GeV/c and angular cuts	335,000 122,400
0μ	Events scanned	85,211
	Vertices located and kink search	20,081
	Events selected for eye-scan	2,282
	Kink candidates after eye-scan	0


	0.11	Total background
0.1	^	Prompt beam v_{τ}
0.8	1	Hadronic "White kinks elastic scattering with no recoil or nuclear breakup
0.05	â	Associated charm production in NC D+/D° missed, associated to D→ μ-/h-+ neutrals
< 0.03 0.3	0.03	Charm from v CC with \mu^+/h^+ wrong charge
0.11 0.02	0.11	Charm from ∇ CC with missed primary lepton $\nu_{\mu\nu_e} N \to D^- X \mu^+/e^+$ $\downarrow_{\mu\nu}/h^-+$ neutrals
υОμ	1μ	Expected Background Events P+>250MeV/c, Ldecay/5plates(1µ), 80%(0µ) and Φ<π/2(0µ)

Limit Evaluation

$$P_{\mu\tau} = \sin^{2} 2\theta_{\mu\tau} \cdot \sin^{2} \left(\frac{1.27 \cdot \Delta m_{\mu\tau}^{2} \cdot L}{E} \right)$$

$$P_{\mu\tau} = \frac{N_{\tau}}{\sum_{i=\{l_{\mu},0_{\mu}\}} BR_{i} \cdot N_{i} \left\langle \frac{\sigma_{\tau}^{CC}}{\sigma_{\mu}^{CC}} \cdot \frac{A_{i}^{\tau}}{A_{i}^{\mu}} \cdot \mathcal{E}_{i}^{kink} \right\rangle}$$


$$\sigma_{\tau}^{cc}/\sigma_{\mu}^{cc} N_{1\mu} \langle A_{1\mu}^{\tau}/A_{1\mu}^{\mu} \rangle \varepsilon_{1\mu}^{kink} N_{0\mu} \langle A_{0\mu}^{\tau}/A_{0\mu}^{\mu} \rangle \varepsilon_{0\mu}^{kink}$$
0.53 143,742 0.97 0.39 20,081 2.3 0.13

[2] G.J.Feldman and R.D. Cousins, Phys.Rev. D57 (1998) 3873 [1] T.Junk, NIM A434 (1999) 435

Chorus Phase II Analyis

- New scanning methods (Netscan,...)
- higher kink finding efficiency (also charm physics)
- electron channel
- muon ID,momentum) Improved reconstruction (tracking, vertex finding,
- Additional vertices located

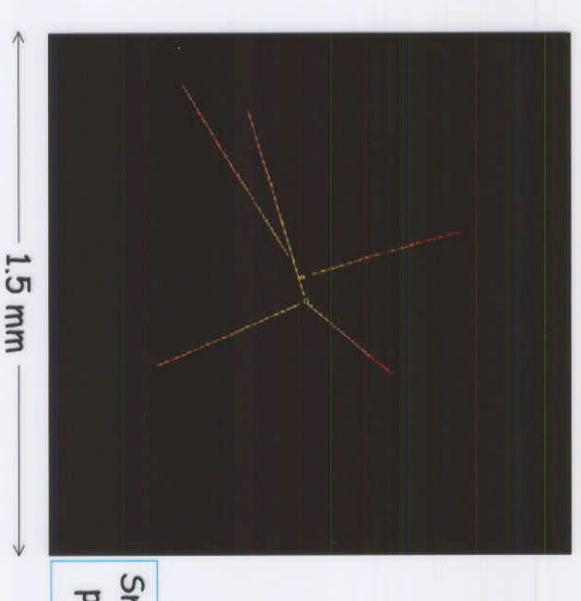
Netscan in CHORUS

- Developed in DONUT analysis
- 3D tracking in emulsion using fast automatic scanning system(UTS)
- Reconstruct all tracks recorded in emulsion
- Application in CHORUS "Phase II"
- 1.5mm x 1.5mm x 6.3mm(8 plates)
- Efficiency study in progress using charm
- Backward TT reconstruction
- Check hits for tracks reconstructed in Netscan
- Data taking
- 6,000 events/month (200 events/day)
- Pilot analysis using 8,974 events for charm detection

Netscan

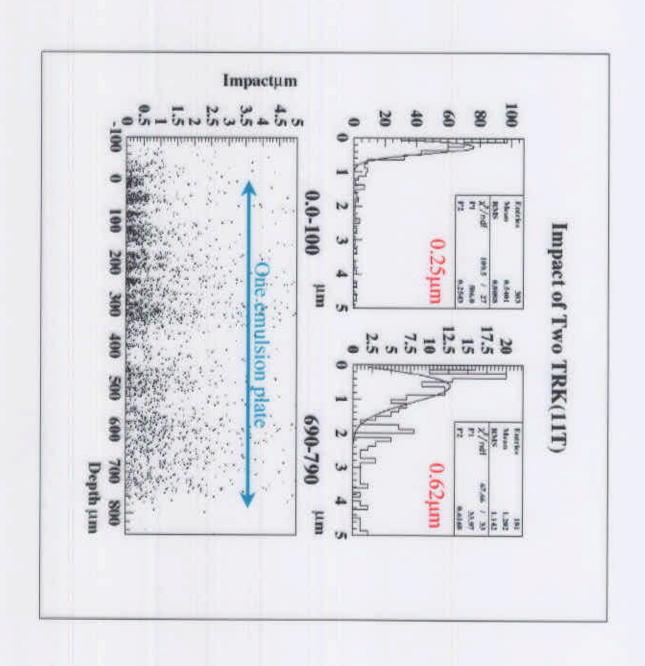
(in progress for Chorus phase II)

Red: Downstream Yellow: Upstream All track segments (6k hits)



1.5 mm

1.5 mm


Netscan

(in progress for Chorus phase II)

1.5 mm

Small impact parameter

Global Quality

- Impact parameter of two track
- 0.25 to 0.62 μm (depth 0-100 to 690-790)
- Transverse and longitudinal resolution of reconstructed vertex.
- 0.33 to 0.74 μm and 3.6 to 9.7 μm
- 0.36 to 0.76 μm
- Angular resolution
- $-0.4 \mu m / 690 \mu m = 0.58 \text{ mrad}$

Pilot charm detection

- 8,974(4147+4827) CC interaction
- Decay daughters are required to be reconstructed in Target Tracker(TT)
- 196 charm candidates (about 120 in E531)
- Efficiency study in progress

DATA

196	ယ	20	40	86	47	Total(8974 CC)
114	_	11	21	48	33	Stack8(4827 CC)
82	2	9	19	38	14	Stack1(4147 CC)
Total	5-pr	4Vee	Trident	Vee	Kink	

196/(8974*0.05) =0.44

Conclusions

- (phase I) We have completed our first run of data analysis
- P_{μτ}=3.7·10⁻⁴ (including systematic) [Junk] channel with an exclusion power (sensitivity) of We observed no candidates with expected backgrounds 0.11 in the 1µ and 1.1 in the 0µ
- 90%CL for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation - $P_{\mu\tau} < 3.4 \cdot 10^{-4}$, sin²2θ_{μτ} < 6.8·10
- $-P_{\mu\tau} < 2.2 \cdot 10^{-4} \text{,} \sin^2 2\theta_{\mu\tau} < 4.4 \cdot 10^{-4} \text{,} \delta \text{m}^2 < 0.5 \text{eV}^2 \text{ [FC](NOMAD)}$ $-P_{\mu\tau} < 3.4 \cdot 10^{-4} \text{,} \sin^2 2\theta_{\mu\tau} < 6.8 \cdot 10^{-4} \text{,} \delta \text{m}^2 < 0.6 \text{eV}^2 \text{ [Junk]}$
- We have started our phase II analysis with the aim of reaching our design sensitivity of $P_{\mu\tau} = 10^{-4}$
- 6k events/month (Using four scanning systems) Pilot study