Recent Top Physics Results and Future Prospects

Steven R. Blusk

University of Rochester

for the CDF Collaboration

Outline

- > Introduction
- Run I Physics Results
- * \(\text{o}(tt)\)
 * \(M_{top}\)
- Top P_t Distribution
- ₩ Helicity in top decays
- Limits on V_{tb}
- Rare decays
- Single top
- Run II Physics and Expectations
- > Summary

Collider Detector at Fermilab

Energy clusters in calorimeters

Leptons (e, µ)
Tracking chambers + calorimeters

Neutrinos
Indirectly observed as an imbalance in the total transverse energy

b-quark jets

Jet in calorimeter, plus, either
(a) SVX tag -reconstructed decay
vertex using silicon vertex detector,

(b) SLT tag - a low energy e or μ in the jet

Standard Model Top

Production

- ☐ Top is primarily produced in pairs
- $\square \sim 90\%$ of production is from $q\bar{q}$ annihilation (at Tevatron) $\sigma(t\bar{t})_{theory} \sim 5.1 \text{ pb}$
- □ Single top is expected with σ(single top) ~ 2.5 pb ...but, it has a different signature (see later slides)

All jets -

Decay

<u>Dilepton</u> - 2 high P_T leptons, MET, 2 high p_T jets

ℓ + jets - 1 high P_T lepton, MET, 4 high p_T jets

6 high p⊤ jets

Backgrounds

S/B	Other	bb	Mismeasured µ	ww	Fake leptons	Z→tt	Drell-Yan	Total Backgrd	Observed
~2.7	4%	2%	13%	15%	16%	25%	26%	2.4	9

13	-		
	4		
	1	1	
	U	د	
O. Constitution	CUS	1	
ı	100	-	
	T.	0	

tag	SVX
tag	SLT

SVX	
SLT	

S/B	WW, WZ, ZZ	Z+11	Single top	Wc, Zc	Weebar, Zeebar	Wbbar, Zbbar	non-W (bb)	mistags	Total Backgrd	Observed	
2.6	5%	2%	10%	7%	12%	34%	13%	17%	8.1	29	
0.9	1%	1%	2%	5%	5%	3%	4%	78%	13.2	25	

All Jets: ≥ 5 jets

≥1 SVX b-tag

S/B	h.f + fakes	Observed
0.24	151.4	187

≥2 SVX b-tags

S/B	h.f + fakes	Observed
0.28	122.7	157

$+ \ge 4$ jets

S/B
7.1
1.4

t Cross Section Results

$$\sigma(t\bar{t}) = \frac{N_{obs} - N_{bkg}}{A \cdot \int L}$$

 $\sigma(tt)$ (pb) at $M_{top} = 175 \text{ GeV}$

l + jets with SVX b-tags

Top Quark Mass

Narrow tt Resonances

The large value of M_{top} could be an indication that the 3rd generation plays a special role in EWSB.

Various models such as "topcolor assisted technicolor" or those invoking a "top quark seesaw" introduce new dynamics to explain EWSB and the large top quark mass.

These models generally predict the existence of tt condensates, such as topgluons and a Z', each which may decay to tt.

Motivated by such models, we search for narrow resonances in the 400-1000 GeV/c² range.

Limits on Narrow Resonances

- Fit the tt invariant mass distribution in data to a combination of S.M. ft, W+jets, and Z' using a binned likelihood.
- Perform the fit for a variety of Z' masses (400-1000 GeV/c²)

$$L = \prod_{i} \frac{\mu_{i}^{n_{i}} e^{-r_{i}}}{n_{i}!}$$

$$\mu_{i} = N_{sig}(i) + \alpha N_{it}^{-}(i) + \beta N_{W+jets}(i)$$

- Smear each likelihood by both shape and acceptance uncertainties:
- Included are: Jet Et scale, M_{top}, ISR & FSR, S.F., background shape, b-tag eff. and luminosity

The data rule out a leptophobic Topcolor Z' with Γ =0.012 (0.04) and mass lower than 480 (780) GeV/c².

Top Pt Distribution

Technicolor and SUSY predict an excess an excess of top quarks at high p_T

- \longrightarrow Measure p_T spectrum using $l+\geq 4$ jets
- constrain M_{top}=175 GeV/c².
- Due to correlations, only use the p_T of the hadronic top
- Determine initial "Response functions"

75 < p_T < 150 GeV/c 150 < p_T < 225 GeV/c 225 < p_T < 300 GeV/c

0 < pr < 75 GeV/c

 $R_1 = 0.29^{+0.18}_{-0.18}(\text{stat})^{+0.08}_{-0.08}(\text{syst})$ $R_2 = 0.42^{+0.18}_{-0.18}(\text{stat})^{+0.05}_{-0.07}(\text{syst})$ $R_3 = 0.29^{+0.12}_{-0.10}(\text{stat})^{+0.06}_{-0.09}(\text{syst})$ $R_4 = 0.000^{+0.035}_{-0.000}(\text{stat})^{+0.09}_{-0.000}(\text{syst})$

An iterative technique is used which results in only a minimal dependence on the initial $p_{\scriptscriptstyle T}$ distribution

$$R_1 + R_2 = 0.72^{+0.13}_{-0.13}(\text{stat})^{+0.06}_{-0.06}(\text{syst})$$

 $R_4 < 0.114 \text{ at 95% C.L.}$

Top P₇ Distribution (Cont)

W Helicity in Top Decays

the W polarization in top decays. The V-A theory of charged current interactions makes a specific prediction for

$$F_0 \approx \frac{M_{top}^2 / 2M_W^2}{1 + M_{top}^2 / 2M_W^2} = 70.1 \pm 1.6\%$$

for
$$M_{top}$$
=175 GeV/c²

$$F_{-} \approx 1 - F_{0}$$

the decay products which then carry the information on the $t \rightarrow Wb$ coupling. Since top decays before hadronization, the helicity information is directly imparted to

■The lepton p_T spectrum carries information on the polarization of the W.

Lepton P₊ as a Function of W Helicity (CDF Preliminary)

HERWIG (tibar production w/ forced W helicities $h_W = -1$ $h_W = 0$ 020 40 50 50 100 110 140 150 300

Lepton P₇ (GeV/c)

Limits on Vtb

F

 \square With the assumption of 3 generations and Unitarity, we can expect that $|V_{+}\rangle = 0.9985$

are likely more than 3 generations \square If V_{tb} is measured and found to be less than this value, this would imply that there

We measure : | B =

$$B = \frac{BF(t \to W + b)}{BF(t \to W + q)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

samples, and compare to predictions as a function 2 b-tagged jets in the $l+\geq 4$ jets and dilepton □ We compare the number of events with 0, 1 and

Assuming 3 generations, B=|V_{tb}|²

$$B = 0.99 \pm 0.29$$
 and $|V_{tb}| = 0.99 \pm 0.15$

V_{tb} > 0.74 @ 95% CL

Assuming >3 generations
$$|V_{tb}| = \sqrt{\frac{B}{1-B}} (|V_{ts}|^2 + |V_{td}|^2)$$

 $|V_{tb}| > 0.048 @ 95\% CL$

Search for Rare Decays

- Good region to search for non-Standard Model physics
- Two FCNC t-decays, $t \rightarrow Zq$ and $t \rightarrow \gamma q$ (q=u or c), were investigated
- Within SM, these decays are suppressed ~ 10-8-10-12
- t → Zq : search for events where at least one top decays via this mode
- observe: 1 event (Z→μμ+4jets)
- background: 0.6±0.2 from WW/ZZ+jets

Br(t \to Zq) < 33% at 95% c.l.

In the S.M. these decays are suppressed by ~10⁻⁸ to 10⁻¹²

- decays via this mode, tt→Wb γq t →γq : search for events where at least one top
- ►observe: 1 event $(\gamma, \ell, E_T \text{ and 2 jets})$
- >background: 0.5 (W→ ℓ_V) and 0.5 (W→qq)

Br(t $\to \gamma q$) < 3.2% at 95% c.l.

Single top

- Predicted by standard model. Direct probe of the strength (V_{tb}) of the electroweak vertex t-W-b. Sensitive to new physics (FCNC).
- W-gluon fusion:
- Hard b-jet, W decay products, soft b-jet(usually lost), light q jet
- $-\sigma = 1.70\pm0.09 \text{ pb (Stelzer 1998)}$
- s-channel W*:
- 2 hard b-jets, W decay products
- $-\sigma = 0.73 \pm 0.04$ pb (Smith 1996)
- Backgrounds include: Wbb, Wcc, Wcc, mistags, and tt production.

H_T Analysis

- First method searches for both processes.
- Event Selection:
- W+1,2,3 jet events+ at least 1 jet SVX b-tagged
- ≈ 140 < M_{wb} < 210 GeV/c²
- 65 Events Observed
- Background from t-tbar production and QCD background
- ₽ Est 62.4 +/- 11.5 Events
- •Signal (W* and Wg)
- Est. 4.3 Events

CDF Preliminary

Unit-Normalized H_T Distributions for Signal and Background

Wg signal

W's signal

QCD background

tt background

H₊ (GeV)

202

Perform an unbinned Likelihood fit to the H_T distribution to extract the 95% CL limit on single top production.

95% CL limit on single top production (Wg + W*): σ < 13.5 pb

CDF Preliminary

Events/(20 GeV/c2) 6 12 14 N Þ o 00 H₇ for Events in W+1,2,3 Jet Bins (CDF Run 1 Data) 50 8 150 200 7 250 Monte Carlo predictions 300 350 400 450 500 single top signal ttbar background QCD background Mean Entries H_T (GeV/c²) 182.9

W-gluon fusion - Q x n Analysis

- W+2 jet data, require 140 < M_{Nb} < 210 GeV/c²
- Pseudo-rapidity (η) of the non-tagged (light quark) jet tends to be positive for top and negative for antitop.
- Assume + (-) charged lepton is from top (tbar).
- Q * η distribution is asymmetric for signal events.

- Observe 15 events
- ➤ Expected Total Bkg 12.9 ± 2.1
- ➤ Expected signal 1.2 ± 0.3
- Fitted Signal:
- >1.4 +4.2 w/ bkg constraint
- -0.0 +6.7 _0.0 w/out
- Extract upper limit: σ_{W-gluon} < 15.4 pb at 95% c.l.

Run II at the Tevatron

Dilepton signal events	Yield of SVX double tagged signal events (4 jets)	Yield of SVX single tagged signal events (4 jets)	b-tagging efficiency (at least one b tag)	σ(ttbar) (pb)	Proton/anti-proton energy	Bunch spacing	Integrated luminosity (fb)	Instantaneous luminosity (cm-2 s-1)	Item
~6	3,	~17	~50%	~5	900 GeV	3.5 µs	0.1	$2x10^{31}$	Run I
~150	~250	~800	~ 65-70%	~7	1 TeV	132/396 ns	2.0	2x10 ³²	Run IIa

 $[\]square$ Run I measurements, such as M_{top} and σ_{ttbar} will be systematics dominated

[☐] Analyses which gave 95% CL will yield O(10%)-ish measurements

Reducing Systematics

- Dominant systematics are generally jet energy scale and MC modelling
- ☐ Many uncertainties will decrease as 11√N

- \square We will have a large sample of $Z \rightarrow bb$ events from which to calibrate/check the energy scale for b-jets
- □ With the ~250 SVX double tagged events (S/B~25), we can unambiguously reconstruct the W mass
- Detailed studies of extra jets from gluon radiation should reduce the systematics from gluon radiation.

Run IIa Expectations

B(t→Zc)	$B(t \rightarrow c\gamma)$	$\sigma * B(X \to t \bar{t})$	B(Wlongitudinal)	V _{tb} (from Single top)	Single top cross section	t t cross section	Top Mass	Measurement
<1.3x10 ⁻²	<2.8x10 ⁻³	~.1 pb at 1 TeV/c ²	~5.5%	~13%	~24%	-9 %	~1.5%	Precision

Other measurements we expect to make:

o Kinematics of top o Spin Correlations o B(V+A) to \sim 3% o $\Gamma(t\rightarrow Wb)$ to \sim 25% o B(t \rightarrow Hb) to <12%

Search for Higgs.

Possible signatures in

p p → t t H ?

Summary

- ☐ We have made a wide range of measurements of the top quark using a relatively small sample of events (~60 ev, total).
- → δm_{top} is known to 2.9% (Better than any other quark!)
- ☐ The top quark is unique in several ways
- > Very massive compared to other quarks
- Decays prior to hadronization. We can examine the properties of a "bare" quark.
- ☐ Run IIa at the Tevatron ~ 8 months away.
- ➤ Sample sizes will be much bigger (~40X)
- Much improved silicon detector
- Our understanding of the top quark should improve dramatically.
- > We are eager to get going!