The $\Delta I = 1/2$ rule and ϵ'/ϵ

Hai-Yang Cheng

Academia Sinica
Taipei, Taiwan, R.O.C.

July 28, 2000 ICHEP2000, Osaka

Outlines

- 1. Difficulties with chiral approach
- 2. Generalized factorization
- 3. $\Delta I = 1/2$ rule in kaon decay
- 4. Direct *CP* violation ε'/ε
- 5. Conclusions

Difficulties with chiral approach

$$A(K \to 2\pi) = \sum c_i(\mu) \langle \pi \pi | Q_i(\mu) | K \rangle$$
$$= \sum c_i(\mu) B_i(\mu) \langle Q_i \rangle_{VIA}$$

where $c_i(\mu)B_i(\mu)$ are scheme and scale independent. Since μ dependence of $\langle Q(\mu) \rangle$ is lost under VIA, how to obtain scheme and scale dependence of hadronic matrix elements or $B_i(\mu)$?

Chiral approach:

 $\langle Q(\mu) \rangle = \langle Q \rangle_{\text{VIA}} + \text{ chiral loop corrections},$ and cutoff is identified with the scale of $c(\mu)$. Difficulties:

• $c(\mu)$ is reliable down to 1 GeV, whereas ChPT is applicable only up to 600 MeV \Rightarrow matching problem.

- How to match quadratic scale dependence of chiral corrections with logarithmic μ dependence of $c(\mu)$? \Rightarrow dimensional regularization is needed to regularize chiral loops. (Missimer et al.)
- How to furnish scheme dependence for chiral corrections?
- While A₀ is largely enhanced, the predicted A₂ is still too large compared to experiment ⇒ need nonfactorized effects (e.g. gluon condensate) other than chiral loops to explain A₂.

(Antonelli, Bertolini, Eeg, Fabbrichesi)

It is not applicable to heavy meson decays.

Generalized factorization

$$\langle Q(\mu) \rangle = \langle Q \rangle_{\text{VIA}} +$$

$$+ \qquad + \cdots$$

$$\sum c_i(\mu) \langle Q_i(\mu) \rangle = \sum a_i \langle Q_i \rangle_{\text{VIA}}$$

For B decays

$$a_1 = \underbrace{c_1(\mu) + c_2(\mu)(\frac{1}{N_c} + \chi_1)}_{\text{naive factorization}} + \underbrace{\frac{\alpha_s}{4\pi}(\gamma_V \ln \frac{m_b^2}{\mu^2} + \underbrace{r_V}_{\text{scale}})c$$

- Vertex corrections to 4-quark operators ensure that the effective parameters a_{1,2} be scheme and scale independent.
- Nonfactorized terms χ_i = χ_i(α_s, Λ_{QCD}/m_b) are complex. In m_b → ∞ limit, χ_i are short-distance dominated and hence calculable.
 (Beneke et al.)

For K decays

- $\ln m_b^2/\mu^2 \to \ln \mu_f^2/\mu^2$ with factorization scale $\mu_f \gtrsim 1$ GeV.
- χ_i are large and arise mainly from soft gluon exchange ⇒ large nonfactorizable corrections to naive factorization.

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[V_{ud} V_{us}^* \sum_{i=1}^{10} z_i(\mu) Q_i(\mu) + V_{td} V_{ts}^* \sum_{i=1}^{10} y_i(\mu) Q_i(\mu) \right]$$

$$A(K \to \pi \pi) = \sum_{i=1}^{10} a_i \langle Q_i \rangle_{\text{VIA}} + \sum_{i=1}^{10} b_i \langle Q_i \rangle_{\text{VIA}}$$

$$a_{2i} = z_{2i}^{\text{eff}} + z_{2i-1}^{\text{eff}} \left(\frac{1}{N_c} + \chi_{2i} \right),$$

$$b_{2i} = y_{2i}^{\text{eff}} + y_{2i-1}^{\text{eff}} \left(\frac{1}{N_c} + \chi_{2i} \right).$$

Further assumptions on nonfactorized effects are needed:

$$\chi_{LL} \equiv \chi_1 = \chi_2 = \chi_3 = \chi_4 = \chi_9 = \chi_{10},$$

$$\chi_{LR} \equiv \chi_5 = \chi_6 = \chi_7 = \chi_8,$$

 $\chi_{1,2}$ can be extracted from $K^+ \to \pi^+ \pi^0$:

$$\operatorname{Re} A_{2} = \frac{G_{F}}{\sqrt{2}} \frac{\operatorname{Re}(V_{ud}V_{us}^{*})}{\cos \delta_{2}} \Big\{ [a_{1} + a_{2} + \frac{3}{2}(-a_{7} + a_{9} + a_{10})] \frac{\sqrt{2}}{3} X + \sqrt{3} f_{\pi} v^{2} a_{8} \Big\} \frac{1}{1 - \Omega_{IB}},$$

data $\Rightarrow \chi_{LL} = -0.73$ (assuming to be real) at $\mu_f = 1$ GeV

A large negative χ_{LL} necessary for suppressing A_2 will enhance A_0 by a factor of 2.

No constraints on χ_{LR} can be extracted from $K^0 \to \pi\pi$.

Bag parameters

$$B_i^{(0)}(\mu) \equiv \frac{\langle Q_i(\mu) \rangle_0}{\langle Q_i \rangle_0^{\text{VIA}}}, \qquad B_i^{(2)}(\mu) \equiv \frac{\langle Q_i(\mu) \rangle_2}{\langle Q_i \rangle_2^{\text{VIA}}},$$

$$B_1^{(0)}$$
 $B_2^{(0)}$
 $B_3^{(0)}$
 $B_4^{(0)}$
 $B_5^{(0)}$
 $B_6^{(0)}$
 $B_7^{(0)}$
 $B_8^{(0)}$
 $B_9^{(0)}$
 $B_{10}^{(0)}$

 NDR
 2.5
 8.7
 -0.1
 2.7
 1.0
 1.5
 1.0
 1.6
 3.1
 3.1

 HV
 2.6
 8.0
 0.9
 2.6
 1.7
 1.5
 1.7
 1.6
 2.9
 2.9

$$B_1^{(2)}$$
 $B_2^{(2)}$
 $B_7^{(2)}$
 $B_8^{(2)}$
 $B_9^{(2)}$
 $B_{10}^{(2)}$

 NDR
 0.34
 0.34
 1.0
 1.6
 0.35
 0.35

 HV
 0.37
 0.36
 1.8
 1.6
 0.37
 0.37

for $\chi_{LL} = -0.73$ and $\chi_{LR} = -0.1$ in naive dimensional regularization (NDR) and 't Hooft-Veltman (HV) schemes.

- $B_{1,2}^{(2)}$ and $B_{9,10}^{(2)}$ are small (~ 0.34) in order to suppress A_2 .
- B_5 , $B_7^{(0,2)}$ are quite sensitive to χ_{LR} , while B_6 , $B_8^{(0,2)}$ stay stable.

$ReA_0/ReA_2 = 13 - 15$ if $m_s(1 \text{ GeV}) = (125 - 175) \text{ MeV}$.

$$A_0 = 0.9$$
 in absence of QCD corrections

 \downarrow

2.0 QCD corrections to z_1 and z_2
 \downarrow

2.3 QCD penguins + electroweak penguins

 \downarrow

1.7 isospin breaking

 \downarrow

2.0 final state interactions

 \downarrow

4.2 NLO corrections to $c(\mu)$ and radiative corrections to $\langle Q(\mu) \rangle$ for $m_s(1 \text{ GeV}) = 150 \text{ MeV}$

13.8 nonfactorized effects

Experimentally $A_0/A_2 = 22.2 \pm 0.1$

Direct CP violation ε'/ε

$$\frac{\varepsilon'}{\varepsilon} = \begin{cases} 1.56 \pm 0.39 \ (1.02 \pm 0.26) \times 10^{-3} & \text{at } m_s \ (1 \,\text{GeV}) = 125 \,\text{MeV}, \\ 1.07 \pm 0.27 \ (0.70 \pm 0.18) \times 10^{-3} & \text{at } m_s \ (1 \,\text{GeV}) = 150 \,\text{MeV}, \\ 0.78 \pm 0.20 \ (0.51 \pm 0.13) \times 10^{-3} & \text{at } m_s \ (1 \,\text{GeV}) = 175 \,\text{MeV}, \end{cases}$$

in NDR (HV) scheme, while experimentally

$$Re(\epsilon'/\epsilon) = (1.93 \pm 0.24) \times 10^{-3}$$

Scheme dependence of ε'/ε is probably due to effects of α_s^2 . Moreover, scheme dependence of y_6 is further amplified by the strong cancellation between QCD penguin and electroweak penguin contributions, making it difficult to predict ε'/ε accurately.

 ε'/ε and in particular A_0/A_2 are not sensitive to the nonfactorized term χ_{LR} .

Conclusions

- We work in the framework in which vertex-type and penguin-type corrections to 4-quark operators account for scheme and scale dependence of hadronic matrix elements. Nonfactorized terms χ_{1,2} extracted from K⁺ → π⁺π⁰ will suppress A₂ and enhance A₀.
- Two principal sources responsible for Re $A_0/\text{Re}A_2$: vertex-type as well as penguin-type corrections to matrix elements of four-quark operators, and nonfactorized effect due to soft-gluon exchange, which is needed to suppress the $\Delta I = \frac{3}{2} K \rightarrow \pi\pi$ amplitude.
- $ReA_0/ReA_2 = 13 15$ if $m_s(1 \text{ GeV})$ lies in the range (125 175) MeV.
- $\varepsilon'/\varepsilon = (0.5 1.3) \times 10^{-3}$ if $m_s(1 \text{ GeV}) = 150 \text{ MeV}$ and $\varepsilon'/\varepsilon = (0.8 2.0) \times 10^{-3}$ if m_s is as small as indicated by recent lattice results.