Prospects on Electroweak Physics from the LHC

Pratibha Vikas

University of Minnesota/CMS

28 July, 2000 XXXXth ICHEP, Osaka

- Sources of uncertainties in EW measurments
- Some studies Top, W, TGC's and Drell Yan
- For details, please consult:

Proceedings of the Workshop on Standard Model Physics (and more) at the LHC, CERN 2000-004, 9 May 2000

ATLAS Detector and Physics Performance Technical Design Report, Volumes 1-2, CERN/LHCC/99-14, 25 May 1999

Introduction

- ◆ Main asset statistics
- ◆ Expected LHC luminosity in first three years ("low luminosity"):

$$\mathcal{L} \sim 10^{33} cm^{-2} s^{-1}$$
 giving $10 fb^{-1}/\mathrm{year}$

◆ Design luminosity ("high luminosity"):

$$\mathcal{L} \sim 10^{34} cm^{-2} s^{-1}$$
 giving $100 fb^{-1}/\mathrm{year}$

Some cross sections and expected during the "low luminosity" phase

Process	σ (pb)	Events/second	Events/year
$W \rightarrow e \nu$	1.5×10^{4}	15	10^{8}
$Z \rightarrow e^+e^-$	1.5×10^{3}	1.5	10^{7}
$t\bar{t}$	800	0.8	10^{7}
$b\bar{b}$	5×10^8	5×10^5	10^{12}
$H(m_H = 700 \text{ GeV})$	-	10^{-3}	10^{4}
Inclusive jets	105	10^{2}	109
$(p_T > 200 \text{ GeV})$			

\Rightarrow LHC a W and Z boson + t and b quark factory

- \blacklozenge Statistical error and systematic errors which scale as $1/\sqrt{N}$ will be negligible
- Uncertainties will be dominated by systematic errors arising from detector and physics knowledge

Main Sources of Uncertainties-I

- Lepton energy and momentum scale:
- Related to the calibration of tracker, electromagnetic calorimeter and muon spectrometer
- Dominant source of uncertainty on the m_W measurement at the Tevatron known to 0.1%
- At the LHC, need to know to $\sim 0.02\%$ for m_W measurement
- Use the high statistics $Z \to ll$ sample $\Rightarrow Z$'s close in mass to W and MSSM $h \Rightarrow$ reduced extrapolation error from measurement to calibration region + E/p of isolated electrons
- Tevatron does not have enough Z's, rely on J/ψ and π^0
- Preliminary studies from ATLAS with 5000000 $Z \rightarrow ee$ decays with full simulation:

Source	Requirement	Uncertainty on scale
Material in inner detector	Known to 1%	< 0.01%
Radiative decays	Known to 10%	< 0.01%
Underlying event	Calibrate and subtract	≪ 0.03%
Pile-up at low luminosity	Calibrate and subtract	≪ 0.01%
Pile-up at high luminosity	Calibrate and subtract	≪ 0.01%

Difficult but not impossible...

◆ Jet Energy Scale:

- Contributes to the uncertainty on m_t measurement
- Depends not only on the detector but also the knowledge of physics (fragmentation, gluon radiation, etc.)
- decaying into leptons balanced by one high p_T jet Known to a precision of 3% at the Tevatron using mainly events with a γ or a Z
- LHC goal 1% can use $W \to jj$ from $t \to bW$ for light quark jet calibration, in
- $tar{t}$ final states with t o bl
 u and t o bjj relatively clean and have a high rate at LHC (~ 0.3 Hz)

♦ Knowledge of Absolute Luminosity:

- Contributes to uncertainty in all cross-section measurements
- Several methods envisaged (very forward two-photon e^+e^- pairs, central two photon production of $\mu^+\mu^-$ pairs)
- Currently, expected precision $\sim 10\%$ (ATLAS) will be the dominant systematic error on all cross section measurements
- Promising : use of W and Z production rate 1% possible (M.Dittmar, F. Pauss, D. Zurcher, Phys Rev D56, 7284(997))
- But, need improved theoretical understanding of mechanisms

- Precision measurements in this sector necessary to get more clues on the origin of the fermion mass hierarchy
- Exploration of top properties only just begun at the Tevatron...
- At the LHC, the large statistics will allow measurements of mass, production cross section, branching ratios, couplings and exotic decays
- tt production main background to new physics processes + top events will be used to calibrate the jet energy scale.
- ♦ tt production cross section: Tevatron ~ 7pb, LHC ~ 800pb + higher LHC luminosity ⇒ LHC statistics ~ 1000× Tevatron
- ♦ In 2005: $\Delta m_t \sim 3$ GeV (Tevatron)
- ◆ At the LHC, statistical error < 100 MeV precision limited by systematics:</p>
- 1% uncertainty on jet scale $\Rightarrow \sim 2$ GeV on m_t
- Further improvements by using high p_t tt pairs (decay products well separated and less sensitive to jet recontruction
- ◆ Total uncertainty of 1% may be achieved

associated W decay: distribution of J/ψ (from the decay of a b-hadron) and the lepton from the New idea from CMS - exploit correlation between m_t and the invariant mass

Overall branching ratio 5.3×10^{-5} but very clean and can be used at the highest luminosity - expect 1000 events/year at high luminosity

- lacktriangle Correlation between $M_{J/\psi}l$ and m_t stronger than $l\mu$
- ♦ Systematic uncertainty, $\Delta m_t \leq 1$ GeV achievable

W Mass Measurement

ullet At LHC startup, precision on W mass, $\Delta m_W \sim 30$ MeV (LEP2 and Tevatron)

$$M_W = \sqrt{\frac{\pi \alpha}{G_F \sqrt{2}}} \cdot \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

- Radiative corrections, $\Delta r \propto m_t^2$ and $\log m_H \Rightarrow m_t$ and m_W contrain the mass of SM Higgs and MSSM h
- To be able to compare measurements with SM predictions, necessary to have similar weights for m_W and m_t in a χ^2 test

$$\Delta M_W \approx 0.7 \times 10^{-2} \Delta m_t$$

- $lacktriangledown_t \sim 2$ GeV at the LHC $\Rightarrow \Delta m_W \sim 15$ MeV beyond Tevatron and LEP2
- $lacktrel{}$ Constrain on $m_H\sim 30\%$ if/when the Higgs is found, will provide an important consistency check of the theory
- Expect 300 million events/year/experiment at low luminosity factor 10 larger than levatron

Measurement of W Mass - ATLAS

◆ Use leptonic decays of the W:

$$m_T^W = \sqrt{2p_T^l p_T^\nu (1 - \cos \Delta \phi)}$$

 $lacktriangledown p_T^{\nu}$ obtained from p_T^{l} and recoil

Source	ΔM_W (CDF I) (MeV)	ΔM_W (CDF I) ΔM_W (CDF IB) (MeV)	ΔM_W (ATLAS) (MeV)
Statistics	145	65	< 2
E-p scale	120	75	15
Energy resolution	80	25	5
Recoil model	60	33	51
Lepton identification	25	į	ഗ
p_T^{W}	45	20	5
Parton distribution functions	50	15	10
W width	20	10	7
Radiative decays	20	20	< 10
Background	10	5	5
TOTAL	230	113	< 25

Combination of port representations and civis, the uncertainty reduceable to ~ 15 MeV

- ◆ Study of Triple-Gauge Couplings (WWγ or WWZ) provide direct test of non-abelian structure of the SM gauge group
- May yield hints of New Physics many new processes expected to give anamolous contributions to triple-gauge vertices
- SM : five parameters g_1^Z (0), λ_γ , λ_Z (0) and κ_γ , κ_Z (1)
- In 2005: $\sim 10\%$ precision from LEP2 and Tevatron
- LHC will benefit from large statistics and high centre-of-mass energy With $30~fb^{-1}$, shaded histogram: SM, white histogram: $\lambda_{\gamma}=0.01$ (left) and

 $g_1^2 = 0.05$ (right):

- Enhancement at high $p_T^{\gamma,Z}$ clearly visible
- Expect: $\sim 2500(W\gamma)$ and 1200(WZ) events with background (ATLAS)

Determination of TGC's

- experimental distributions Different extraction techniques depending on the statistics and dimensionality of
- Use binned maximum likelihood fit to distributions of the observables, combined with total cross section information
- ullet Expected sensitivity limits (95% CL) at LHC with $30~fb^{-1}({\sf ATLAS}$) and 100 $fb^{-1}(CMS)$:

Vertex $WW\gamma \\ \Lambda_{FF} = 10\mathrm{TeV}$	Coupling $\Delta \kappa_{\gamma} \ \lambda_{\gamma}$	$(m_{W\gamma}, \eta^*) = 0.035 = 0.0025$	$(p_T^{\gamma}, \theta^*) = 0.046 \\ 0.0027$	$p_T^{\gamma} = 0.043$ 0.0020
ZMM	$\Delta g_1^Z \\ \Delta \kappa_Z$	0.0078 0.069	0.0089	
$\Lambda_{FF}=10\mathrm{TeV}$	λ_Z	0.0058	0.0071	
$ZZ\gamma$ $\Lambda_{FF}=6 ext{TeV}$	h_{30}^{Z} h_{40}^{Z}	ŢŢ	ΙÍ	6.4 1.8

Expect an improvement in sensitivity by up to two(four) orders of magnitude for anamolous $WW\gamma/WWZ(ZZ\gamma)$ couplings wrt current Tevatron limits

 In the SM, production of lepton pairs in hadron-hadron collisions described by s-channel exchange of γ or Z bosons

$$\frac{d\hat{\sigma}}{d\Omega} = \frac{\alpha^2}{4s} [A_0(1 + \cos^2 \theta) + A_1 \cos \theta]; \hat{\sigma} = \frac{4\pi\alpha^2}{3s} A_0, A_{FB} = \frac{3}{8} \frac{A_1}{A_0}$$

lacktriangle At the Z-peak, Z dominates the exchange, at higher energies both γ and Z contribute

$$\frac{d\hat{\sigma}}{d\Omega} \sim |\gamma_s + Z_s + \text{New Physics ?!}|^2$$

Events near the Z-pole: $\sin^2 \theta_{eff}^{lept}$ and $\operatorname{pdf's}$

High mass pairs (110-400 GeV):
precision studies at the LHC
Very high mass pairs (400-4000 GeV):
sizeable sample at LHC for tests of
SM, searches of new phenomena at the
TeV scale

Drell-Yan Production of Lepton Pairs

Comparison of event yields:

33000	250		i	> 400 GeV
2.6×10^{6}	46000	148 (> 150 GeV)	12500	> 110 GeV
$\sim 134 \times 10^6$	$\sim 1.5 \times 10^6$		4	Z pole
PYTHIA	PYTHIA	Data	SM / Data	
100 fb ⁻¹	10 fb^{-1}	110 pb ⁻¹	600 pb ⁻¹	
CHC	TEV2	CDF	LEP2	Pair Mass

- Measurement of $\sin^2 \theta_{eff}^{lept}$ difficult to compete with LEP/SLC and Tevatron (central acceptance, PDF control) \Rightarrow can improve PDF
- Possible to measure $\frac{\sigma_{DY}^{high\,Q^2}}{\sigma_Z}$ with < 1% systematic error
- lacktriangle A_{FB} can be measured upto 2 TeV with $>3\sigma$
- lacktriangle Probe EW radiative corrections as a function of Q^2 up to 1.5 TeV at 2σ level
- ♦ Rich search field low scale gravity, contact interactions, sneutrinos, Z

Conclusions

- In addition to its huge potential for the discovery of New Physics, LHC will allow precision measurements if the EW sector
- Significant improvements on Tevatron and LEP results obtainable with only one-two years of operation
- ◆ Some illustrative studies presented non exhaustive
- Statistical error will be negligible for most measurements systematic effects will limit precision
- Precision of many measurements will be limited by the knowlegde of physics
- Need improved theoretical calculations to match experimental accuracy