

Bose-Einstein correlations in W decays at LEP

CERN-ALEPH Andrea Valassi

July 28, 2000 XXXth ICHEP, Osaka

Bose-Einstein Correlations (BEC)

- of multiple identical bosons due to amplitude symmetrization
- will only consider pairs in this talk
- BEC can be studied using the two-particle correlation function

$$R(p_1, p_2) = \frac{\rho(p_1, p_2)}{\rho_0(p_1, p_2)}$$

- need a «reference» ρ_0 with no BEC
- unlike-sign charged pairs
- event mixing
- Monte Carlo with no BEC
- the effect is largest at small four-momentum difference

$$Q^2 = -(p_1 - p_2)^2$$

Introduction

BEC are well established in Z→qq decays at LEP1

using π[±] π[±], K_s⁰K_s⁰, K[±] K[±] pairs

BEC are also studied in W→qq decays at LEP2

- → the subject of this talk!
- analyses presented are for π[±] π[±] pairs
- relevant to the W mass measurement

Only phenomenological models exist for BEC

- should symmetrize non-perturbative
 QCD amplitudes which are not known
- phenomenological parametrization

$$R(Q) \sim (1 + \lambda \exp(-r^2 Q^2))$$

for a BEC source of radius r and BE strength λ

Andrea Valassi, CERN

BEC in WW events: status of analyses

Results in this talk are based on:

ALEPH

479 pb-1 @ 172-202 GeV (PREL.)

DELPHI

437 pb-1 @ 183-202 GeV (PREL.)

13

177 pb-1 @ 189 GeV (PUBL.)

OPAL

250 pb-1 @ 172-189 GeV (PREL.)

Selection performance

lvqq	qqqq	Channel
50-75%	70-90%	Efficiency
qq(3%), 4f(3%)	qq(15%), 4f(5%)	Backgrounds

Typical event samples analysed

192-202	189	183	172	vs (GeV)
230	175	拐	10	L (pb ⁻¹)
1700	1300	400	40	Nsel WW-qqqq
1100	800	250	30	Nsel WW-xlvqq

in WW events

«Intra-W» BEC observed!

BEC for pions from the same W

1

- a.k.a. «BEI» (BEC Inside a W)
- present in any hadronic W decay

Do «Inter-W» BEC exist?

- BEC for pions from two different W's
- a.k.a. «BEB» (BEC Between W's)
- only relevant for WW->qqqq events
- W decay products overlap in space-time
- distance between W decays ~ 0.1 fm
- hadronisation scale ~ 1 fm
- Many theoretical models for BEB
- most common are variants of Jetset Luboei
- BEB may bias the W mass measurement
- models give contradictory predictions
- · systematic error ΔM_W is 25 MeV on M_W^{LEP}

I will focus on the BEB analyses

ALEPH analyses

BEC models tuned

- (1) Unlike-sign pair analysis
- unlike-sign pairs taken as reference ρ₀ double ratio (over MC with no BEC)

corrects for possible distortions:
$$R^*(Q) = \left(\frac{N_\pi^{++,--}(Q)}{N_\pi^{+-}(Q)}\right)^{\mathrm{data}} / \left(\frac{N_\pi^{++,--}(Q)}{N_\pi^{+-}(Q)}\right)^{\mathrm{MC}}_{\mathrm{no BE}}$$

MC prediction includes background

Conclusions:

Data are compatible with the BEI model studied The BEB model considered is disfavoured by 2.20

(2) Mixed-reference analysis

pairs from mixed lygg events

taken as reference po

R^m(Q)

 $R^{m}(Q)=(\pi^{++,-}4j/\pi^{++,-}2j,mixed)/(MC standard)$

corrects for possible distortions:

- Data 183 202 GeV

O MCfull BE

MC inside BE

1.05

 $\left(N_{\mathrm{Sel.}~4\mathrm{q}}^{++,--}\right)$ MC(WW+qq), no BEC

 2π 's in WW \rightarrow qqqq events, either from the same W estimated from 2 mixed or from different W's WW-lvqq events (without BEB): (with BEI)

0.95

(only statistical errors, BEB model disfavoured

ICHEP 2000, Osaka

8.5

1.5

Q (GeV)

MC qqbar selected as WW

0

MC WW full BE

MC WW inside BE

1.3

0.9

H

1.2

8.0

0.5

1.5

2.5

Q (GeV)

The BEC enhancement to WW→qqqq events in the qq background

looks like BEB!

Background MC with BEC

in all MC predictions

is included

entering Rm(Q).

Mixed lygg events are taken as reference ρ_0 If the two W's decay independently:

 $\rho_2^{\mathrm{WW}}(p_1, p_2) = 2\rho_2^{\mathrm{W}}(p_1, p_2) + 2\rho_1^{\mathrm{W}}(p_1) \, \rho_1^{\mathrm{W}}(p_2)$

 2π 's from the same W:

WW→lvqq events estimated from

in WW→qqqq

any 2 π's

2 π's from different W 's:

estimate ρ_{mix}^{WW} built by mixing

2 WW→lvqq events

L3 analysis

(from MC with BEC) from the data is subtracted Background

The following single and double ratios are defined:

$$D(Q) = \frac{\rho_2^{\text{WW}}(Q)}{2\rho_2^{\text{W}}(Q) + 2\rho_{\text{mix}}^{\text{WW}}(Q)}$$

and

$$D'(Q) = rac{D(Q)}{D_{ ext{MC, noBE}}(ar{Q})}$$

if inter-W BEC do not exist D = D' = 1

> in the double ratio BEI MC is used

Andrea Valassi, CERN

ICHEP 2000, Osaka

The D'(Q) distribution is fitted using $D'(Q) = (1 + \varepsilon Q) (1 + \Lambda \exp(-k^2 Q^2))$

shows an enhancement **BEB** distribution

expected to be flat BEI distribution is (no inter-W BEC)

Data agree with BEI

if inter-W BEC do not exist A = 0

Results for BEC strength parameter Λ :

 $\Lambda (BEB MC) = 0.127 \pm 0.007 (stat. only)$ Λ (data) = 0.001 ± 0.026 (stat.) ± 0.015 (syst.)

Conclusions:

BEB model considered is disfavoured by >40 Data compatible with intra-W BEC (1~0)

Mixed-method analysis

MC with no BEC taken as reference ρ_0 to build $R_{4q}(\mathbb{Q})$ for WW \rightarrow 4q events

$$R_{4q}(Q) = \frac{\left[\rho_{4q}(Q)\right] \text{ data}}{\left[\rho_{4q}(Q)\right] \text{ MC no BEC}}$$

More details about Delphi analyses were given in Nelli Pukhaeva 's talk.

DELPHI

- Compare to R_{4q}(Q) mix built from lvqq data

$$R_{4q}(Q)^{mix} = \frac{\left[\rho_{2q}\left(Q\right) + \rho_{mix}\left(Q\right)\right]^{data}}{\left[\rho_{2q}\left(Q\right) + \rho_{mix}\left(Q\right)\right]^{MC \text{ no BEC}}}$$

If BEB do not exist, $R_{4q}(Q) = R_{4q}(Q)^{mix}$

This assumption is tested using the BEI MC, $R_{4q}(Q)^{BEI} \sim R_{4q}(Q)^{mix}$

The prediction for the BEB model is much higher

Andrea Valassi, CERN

Results from mixed method:

 $\Delta \lambda^{\text{mix}} = \lambda_{4q} - \lambda_{4q}^{\text{mix}} = 0.062 \pm 0.025 \pm 0.021$

Similar results from «linear scenario»

 $\Delta\lambda^{linear}=\lambda_{4q}-\lambda_{4q}^{linear}=0.077\pm0.026\pm0.020$

R_{4q}(Q) and R_{4q}(Q)^{mix} distributions fitted simultaneously with

$$R(Q) = \gamma(1 + \delta Q) \left(1 + \lambda e^{-r^2 Q^2}\right)$$

with same γ , δ , r but different λ_{4q} and λ_{4q}^{mix}

If BEB do not exist, $\Delta \lambda^{mix} = \lambda_{4q} - \lambda_{4q}^{mix} = 0$

Conclusions:

Data support inter-W BEC at the level of ~ 20

The BEI model considered is disfavoured

Unlike-sign pairs taken as reference po

 double ratio C(Q) is used, (data)/(MC with no BEC)

C(Q) distributions studied for 3 sample

- WW→ qqqq
- WW → lvqq
- high-energy qq events

Deconvolute as sum of 3 contributions

(with probabilities given by the MC):

Csame(Q) for BEC in the same W

- Cdiff(Q) for BEC between different W's
- $C^{z*}(Q)$ for BEC in qq events
- slight differences if selected as qq, qqqq or lvqq

Simultaneous fits to Csame(Q), Cdiff(Q), CZ*(Q):

 $C(Q) = N (1 + f_{\pi}(Q) \lambda \exp(-Q^2R^2))$

OPAL preliminary

If inter-W BEC do not exist, $\lambda^{diff} = 0$

3 scenarios considered for source size R

- same Rdiff = Rsame = RZ*
 λsame=0.70±0.10, λdiff=-0.14±0.36
- independently variable Rdiff, Rsame, RZ*
 λsame=0.62±0.10, λdiff=2.85±1.70
- impose (Rdiff)² = (Rsame)² + (W motion) ² λsame=0.69±0.12±0.06, λdiff= 0.05±0.67±0.35

Conclusions:

Data compatible with no-BEB hypothesis (Rdiff~O) Not established whether inter-W BEC exist or not

... with different results! Different methods...

Conclusions? ALEPH (172-202 prel.) disfavoured (~ 2.20, prel.) Inter-W BEC are

DELPHI (172-202 prel.) Inter-W BEC are

L3 (189 publ.) Inter-W BEC are disfavoured (~ 40)

OPAL (172-189 prel.) Inter-W BEC are neither favoured nor disfavoured

Still a lot to

