W mass measurements using fully hadronic events at LEPII

Sascha Schmidt-Kärst RWTH Aachen

L3 experiment, CERN

XXXth International Conference on High Energy Physics July 27 – August 2, 2000, Osaka, Japan

- ▶ LEP: 460 500 pb⁻¹ per experiment above the W-pair threshold up to 202 GeV
- more than 7000 W-pairs per experiment
- M_W & T_W: all experiments: preliminary results from 192 - 202 GeV

improved LEP combination

XXXth ICHEP

W⁺W⁻ production at Born level (CC03):

W+W⁻ decay channels:

WW
$$\rightarrow$$
 qqqq 45.6 % WW \rightarrow qq $\ell\nu$ $\left\{\begin{array}{l} qqe\nu\\ qq\mu\nu\\ qq\tau\nu \end{array}\right\}$ 43.8 % WW \rightarrow $\ell\nu\ell\nu$ 10.6 %

XXXth ICHEP

Selection of fully hadronic W+W- decays

- W⁺W[−] → qqqq: ▷ high multiplicity hadronic events and no missing energy
 - multivariate analysis to separate signal from background

qqqq	efficiency	purity
ALEPH	89%	85%
DELPHI	85%	75%
L3	83%	84%
OPAL	85%	78%

- force event into 4 jets using cluster algorithm
- advantage of W⁺W[−] → qqqq: all decay products
 are observed
- improve raw invariant mass imposing kinematic constraints:
 E and p conservation
 equal masses for W bosons
 → 1C
- ⇒ kinematic fit mainly improves energy resolution
- 5C kinematic fit and average mass (M):
 L, O
- 4C kinematic fit and two masses (M₁, M₂):
- 4C kinematic fit and complete likelihood for each event:
 D

- W⁺W[−] → qqqq: 3 pairings of jets possible
- combinatorial background due to incorrect pairing

Mass reconstruction: Pairing

- different approaches to improve correct pairing
- best permutation applying pairing algorithm:
- matrix elements: $|\mathcal{M}_1|^2 > |\mathcal{M}_2|^2 > |\mathcal{M}_3|^2$
- 1st or 2nd pairing satisfying cuts on mass window and sum of di-jet angles
- best pairing(s) from 5C kinematic fit:
- L, O

- fit probabilities: P₁ > P₂ > P₃
- 1st and 2nd pairing satisfying cuts on probabilities P₁ and P₂
- all pairings:

D

⇒ correct combinations ~ 90%

Mass reconstruction: Pairing

- more jets due to gluon radiation . . .
- ▶ 5 jets ⇒ 10 combinations
- pairing likelihood to select preferred permutation
- D: all permutations are taken into account

OPAL (Prelim.) 192-202 GeV

Mass reconstruction: Methods

- measurement of W boson mass Mw:
- ▶ MC reweighting: $\omega_i = |\mathcal{M}_i(\mathsf{M}_{\mathsf{W}}^{\mathsf{fit}})|^2/|\mathcal{M}_i(\mathsf{M}_{\mathsf{W}}^{\mathsf{gen}})|^2$
 - → 1-dimensional fit to 5C mass (M) L,O
 - → 2-dimensional fit to rescaled 4C

 masses M'₁₂ = M₁₂ · E_{beam} / (E₁ + E₂)
- ▶ fit $BW(\Gamma_+, M_W) \times BW(\Gamma_-, M_W)$ to 5C mass O
 - asymmetric mass peak due to ISR
 - calibration with many MC samples
 - fitted mass corrected for shifts due to selection, reconstruction and fitting
- convolution of 2-dimensional Breit-Wigner D,O
 with resolution function

DELPHI: W⁺W⁻ → qqqq candidate at
 √s = 208.8 GeV

- 4C fit for each pairing
 → 2 masses
- 2-dim. probability density for each pairing
- ▶ PDF convoluted with BW(M₁, M₂, M_W)
- event likelihood L(Mw)

- different systematic errors due to Bose-Einstein correlations and Colour Reconnection
- Description of different models? → test with MC samples with/without CR
- ▶ equal sensitivities! → common uncertainty used in LEP combination for CR and BEC
- LEP: simultaneous fit to all individual results from the experiments for each channel and year
- Split in years/energies: correlated systematic errors treated correctly: → LEP beam energy
 - → possible √s-dependence

 breakdown of typical systematic uncertainties for Mw from hadronic and all channels

Source	ΔM _w [MeV]	ΔM _W [MeV] qqqq and qqℓν combined
ISR/FSR	10	8
Hadronization	23	24
Detector systematics	7	10
LEP beam energy	17	17
Colour Reconnection	50	13
Bose-Einstein Correlations	25	7
Other	5	4
Total Systematic	64	36
Statistical	34	30

- Some errors are correlated between final states . . .
- LEP beam energy, QED radiation effects (ISR/FSR)
- Hadronization: compare string (JETSET) with cluster models (HERWIG)
- ⇒ large contribution to combined systematic error
- Some errors are for qqqq only . . .
- estimate
 △M_W(FSI) = 56 MeV due to BEC and CR
- ⇒ reduced contribution to combined M_W:

$$qq\ell\nu = 73\% \leftrightarrow qqqq = 27\%$$

experimental test of possible FSI is difference

$$\Delta M_{W} = M_{W}(qqqq) - M_{W}(qq\ell\nu)$$

- systematic error due to BEC and CR set to zero
- LEP: correlations between two channels and experiments are taken into account

→ no indication of mass shift due to FSI

NB: considering fragmentation effects as uncorrelated between experiments > increases only uncertainty

- combination of M_W from direct reconstruction from all energies 172 – 202 GeV
- ⊕ semileptonic M_W
 ⊕ M_W from fully leptonic
 talk by R. Ströhmer
- correlations between channels and experiments are included
- ⊕ threshold measurement at 161 GeV

- ... if there were no systematic effects ...
- → statistical precision on combined M_w: 25 MeV
- ... actual statistical error contribution: 30 MeV
- reflects reduced weight of hadronic channel

- mass fits: width \(\Gamma_W\) fixed to SM prediction
- method of direct reconstruction used to determine
 width Γ_W of the W boson: → fit to both M_W and Γ_W

- large differences between systematic uncertainties quoted by the experiments: 90 – 160 MeV
- LEP: Desimilar combination procedure as for Mw
 - correlated systematic uncertainties are taken into account
- CDF: Direct determination of W boson width

$$\Gamma_{\rm W}=2.05\pm0.13~{\rm GeV}$$

LEP: precise measurement of W mass and width

$$M_W = 80.432 \pm 0.073 \text{ GeV for qqqq}$$
 $M_W = 80.427 \pm 0.046 \text{ GeV}$
 $\Gamma_W = 2.12 \pm 0.11 \text{ GeV}$

... current uncertainty is dominated by systematics:

$$\Delta M_W(stat.) = 30 \text{ MeV}$$

 $\Delta M_W(syst.) = 36 \text{ MeV}$

- largest contribution from Hadronization uncertainties
- better understanding of Bose-Einstein Correlations and Colour Reconnection and their impact on M_W and \(\Gamma_W\) needed
- 2000: experiments already collected 110 pb⁻¹ each
- 200 pb⁻¹ per experiment can be expected
- statistical error x 0.85
- final error
 ∆M_W = 30 − 40 MeV