

Colo(u)r Reconnection in W Decays

.....

results from ALEPH, DELPHI, L3, OPAL

Paul de Jong NIKHEF, Amsterdam

July 28, 2000 ICHEP 2000, Osaka

- Motivation
- Multiplicities
- Energy- and Particle Flow
- ullet Effect on M_W^{qqqq} Measurement

Cato(u)r Reconnection in W Decays (page 1)
results from ALEPH, DELPHI, L3, OPAL

WW Production at LEP 2:

Year	\sqrt{s} [GeV]	$\int \mathcal{L}dt/\text{expt.} \left[\text{pb}^{-1} \right]$	$\sigma_{ m WW}$ [pb]
1997	183	55	15.3
1998	189	175	16.2
1999	192 - 202	220	16.5 - 17.1
2000	> 205	> 100	

This talk: 183-202 GeV, most results preliminary.

WW decays can be classified in 3 topologies:

$$WW o qqqq$$
 46% $\sim 3200 \text{ evts/expt.}$ $WW o qq\ell\nu$ 44% $\sim 2500 \text{ evts/expt.}$ $WW o \ell\nu\ell\nu$ 11%

Major goal: measure $M_{\rm W}$, from W decay kinematics; a statistical error of ~ 20 MeV appears reachable.

Energy-momentum exchange between W decay products not simulated in Monte Carlo affects W mass measurement:

- QED: all decay modes, calculable, small
- QCD: colour reconnection, WW → qqqq only

Colour Reconnection

Standard MC programs treat the two $q\bar{q}$ systems in WW \rightarrow qqqq as two colour singlets without interactions.

⇒ all hadrons can be uniquely assigned to a W boson

However, interconnections in WW → qqqq are in fact to be expected in QCD:

WW decay vertices ~ 0.1 fm hadronisation scale ~ 1 fm ⇒ large spacetime overlap

Coherent gluon emission from both $q\bar{q}$ systems for $E_g < \Gamma_W \Rightarrow$ interference

Perturbative effects of CR (hard gluon exchange between quarks from W decay) suppressed ($\sim (\alpha_s/\pi)^2 \Gamma_W/N_c^2$) : few MeV

Colour reconnection is a non-perturbative hadronization uncertainty.

Study CR as implemented in hadronization models.

Colour Reconnection Effects

Colour reconnection: change of colour flow pattern, connection between different W's:

Effects:

- Change (decrease) of multiplicities
 - Soft particles p < 1 GeV
 - Heavy particles (K[±], p)
- Change of particle- and energy flow between jets

<u>Goal</u> in these analyses: regard CR as a signal, measure its strength, calibrate W mass shift in qqqq channel against measurements. \Rightarrow Get CR M_W^{qqqq} systematic error from data, reduce model dependence.

Also interesting for better understanding of hadronization!

Compare qqqq data to:

- MC models with and without CR
- ♦ data without CR: qqℓν, mixed events

 $e^+e^-
ightarrow ZZ$ events cannot help us: difficult separation from WW, low statistics.

Colour Reconnection Models

- → PYTHIA: based on reconfiguration of strings
- Models from Sjöstrand-Khoze

CR can occur for overlapping/crossing strings

- ♦ SK I: String is flux tube with lateral dimension. Reconnection based on string-string overlap O: Preco = 1 - e^(-k_iO), k_i is free parameter. 1 reconnection allowed: most overlapping.
- SK II: String is vortex line, no lateral dimension, 1 reconnection allowed: earliest crossing.
- SK II': as SK II, but only if string length (λ) reduced.

GH: for demonstration purposes only

- → ARIADNE: rearrangement of colour dipoles if total string length reduced
- Based on model of Gustafson-Häkkinen
 - \bullet AR2: CR after radiation of energetic gluons $E_g > \Gamma_W$
 - + AR3: All CR allowed

Note: affects LEP 1 data: OPAL analysis of Z data (properties of quark- and gluon jets) disfavours current ARIADNE reconnection models.

- → HERWIG: local cluster reconnection
- rearrangement of clusters if reduction of space-time extension.

SK I model at $\sqrt{s} = 189$ GeV:

Charged particle multiplicity

Study charged particle multiplicity in WW \rightarrow qqqq and WW \rightarrow qq $\ell\nu$ events:

Study $< N_{ch}^{4q}>$, $< N_{ch}^{2q}>$ and $\Delta < N_{ch}> = < N_{ch}^{4q}> -2 < N_{ch}^{2q}>$

Predictions for $\Delta < N_{ch} >$:

SK I: -0.3 at $\sqrt{s} = 189$ GeV

SK II: -0.2 $< N_{ch}^{4q} > \approx 38$

SK II': -0.2 Effects $\sim 1-2\%$

GH: -0.4 (SK I: reconn. fraction $\sim 32\%$)

AR 2: -0.3

AR 3: -0.9

$< N_{ch} >$ obtained from charged tracks:

- Unfolded multiplicity distribution
- ♦ Corrected fragmentation function

Multiplicity Distributions

Example of multiplicity distribution at $\sqrt{s} = 189$ GeV:

Charged Multiplicities

0 0

Hadronic charged multiplicity measurements:

± 0.15 $+0.93 \pm 0.27 \pm 0.29$	$17.41 \pm 0.12 \pm 0.15$	$35.75 \pm 0.13 \pm 0.52$	ALEPH 183-202 GeV
	$19.78 \pm 0.49 \pm 0.43$ $19.49 \pm 0.31 \pm 0.27$	$38.11 \pm 0.57 \pm 0.44$ $39.12 \pm 0.33 \pm 0.36$	DELPHI 183 GeV DELPHI 189 GeV
$-0.29 \pm 0.26 \pm 0.30$	$19.09 \pm 0.11 \pm 0.21$	$37.90 \pm 0.14 \pm 0.41$	L3 183-202 GeV
$-0.15 \pm 0.44 \pm 0.38$	$19.23 \pm 0.19 \pm 0.19$	$38.31 \pm 0.24 \pm 0.37$	OPAL 189 GeV
$\Delta < N_{ch} >$	$< N_{ch}^{2q} >$	< N ⁴⁹ _{ch} >	ODAI 183 CAV

ALEPH: not unfolded to full acceptance

DELPHI: $< N_{had}^{qqqq} > /2 < N_{had}^{qq\ell\nu} > = 0.990 \pm 0.015 \pm 0.011$

Averaging is difficult: definitions, correlated systematics

Unofficial: combined error 0.3-0.4, result consistent with 0.

⇒ Correlated systematics (0.2-0.3) of same size as effects → limited sensitivity

Same conclusions for dispersions D^{4q} , D^{2q} , $\Delta D = D^{4q} - \sqrt{2}D^{2q}$.

Fragmentation function: $x_p = 2p/\sqrt{s}$,

CR effects predominantly at p < 1 GeV

But measurements have 60% larger statistical error.

DELPHI 183+189 GeV, 0.1 GeV: $N^{4q}/2N^{2q} = 0.980 \pm 0.024 \pm 0.011$

Sensitivity for realistic models still poor. No significant effects observed by expts

 p_T , rapidity. No gain in sensitivity seen. Further studies: multiplicity as function of

Calo(u)r Reconnection in W Decays (page 10) results from ALEPH, DELPHI, LJ, OPAL

O

Heavy particles, like K^\pm , p, are likely to be DELPHI: Use dE/dx in TPC, and

(B)(P) 69

939

0 0

more sensitive to CR (factor ~ 2):

tors, to tag K^{\pm} , p, \bar{p} in WW events at $\sqrt{s}=189$ GeV. Cerenkov information from RICH detecEfficiency depends strongly on p, average ~ 60%. Purity ~ 60%.

Results for ratio $R = N^{4q}/2N^{2q}$:

Particle	All p	0.2 - 1.25 GeV/c
π^{\pm}	$1.02 \pm 0.03 \pm 0.04$	$1.03 \pm 0.03 \pm 0.01$
K^{\pm}	$0.98 \pm 0.17 \pm 0.08$	$0.96 \pm 0.38 \pm 0.08$
p, \bar{p}	$0.97 \pm 0.28 \pm 0.11$	$0.72 \pm 0.57 \pm 0.08$

OPAL: Use dE/dx in jet chamber.

Mean efficiency $\sim 60\%$, purity $\sim 90\%$ Results: (p between 0.2 and 1.1 GeV)

00 69

1000 9 9

$$R(183 \text{ GeV}) = 0.91 \pm 0.13 \pm 0.08$$

$$R(189 \text{ GeV}) = 1.11 \pm 0.08 \pm 0.06$$

OPAL data KORALW ARE ARG

A T S S S D T S S S

Crey and a substitute of the substitute of th

uminosity, statistical error can decrease by Outlook: combining experiments and all factor $\sim 2.5 \Rightarrow \text{test AR3}$

Colo(u)r Reconnection in W Decays (page 12) results from ALEPH, DELPHI, L3, OPAL

Particle Flow Between Jets

NEW: analysis of particle- and energy flow between jets in qqqq events: probe string topology (compare: "string effect")

Desired: clean topology: 4 jets with Durham algorithm, efficient jet-pairing, clear jet-ordering (prefer planar events):

Strong cuts on angles between jets Selection efficiency $\sim 15~\%$ Correct pairing: $\sim 87~\%$

Build particle- and energy flow distributions:

Energy flow: $\frac{1}{N_{\rm out}} \frac{1}{E_{\rm tot}} \frac{\Delta E_i}{\Delta \phi}$

Particle flow: $\frac{1}{N_{\rm out}} \frac{\Delta n}{\Delta \phi}$

Particle flow distributions:

tween jets, symmetrize by using 4 planes. Subtract background, rescale angles be

63 610

Model Predictions

CR model predictions for flow between jets:

⇒ Depletion between same W, increase between diff. W Sensitivity at detector level similar to particle level Combine regions between same W (A+B) and between different W's (C+D)

Take ratio R = (A+B)/(C+D) = flow between same W normalized to flow between different W's.

(ratio: some systematics cancel.)

L3 Results

:0001

L3, $\sqrt{s} = 189$ GeV, 176 pb⁻¹, 208 data events:

$R = \int (A+B)d\phi / \int (C+D)d\phi$, 0.3 < $\phi_{\rm resc}$ < 0.7:

Model	R_N	R_E
No CR	0.868	0.696
SK I (100%)	0.709	0.565
SK II	0.855	0.680
GH	0.758	0.615

Sensitivity for SK I (100%): 3.2 σ Sensitivity for SK I (32%): \sim 1 σ

L3 data:

$$R_N = 0.771 \pm 0.049 \, (\text{stat.}) \, \pm 0.029 \, (\text{syst.})$$

$$R_E = 0.593 \pm 0.058 \, (\mathrm{stat.}) \, \pm 0.020 \, (\mathrm{syst.})$$

Systematics: fragmentation (JETSET-HERWIG), background, flow objects construction, Bose-Einstein cor.

ALEPH: very similar particle flow analysis, $\sqrt{s} = 189 - 200 \text{ GeV}$, 347 pb⁻¹, 446 events:

model with various values of free param-Compare flow (A+C)/(B+D) to SK I

eter k_i :

Colo(u)r Reconnection in W Decays (page 17) results from ALEPH, DELPHI, LJ, OPAL

ICHEP 2000, Osaka July 28, 2000

L3: vary P_{reco} and calculate χ^2 for data-MC comparison over $0 < \phi_{resc} < 1$:

standard deviations. nected events, difference with No CR ~ 1.7 Minimize χ^2 : data prefers $\sim 40\%$ of recon-

 $(\sim 45\%$ reconnection). ALEPH data prefers $k_* \approx 0.25$ ($\sim 15\%$ reconnection), 1σ upper limit for k_i : 1.4

July 28, 2000

Colo(u)r Reconnection in W Decays (page 16) results from ALEPH, DELPHI, L3, OPAL

0

183 pb-1. OPAL: particle flow analysis, $\sqrt{s} = 189 \text{ GeV}$,

rity 89%. efficiency 42% (699 events), jet-pairing pulihood variable to assign jets to W's: overall Use less restrictive cuts, and jet-pairing like-

But: less planar events, higher probability for cross-talk of particles to other inter-jet

Cross-check: analysis with angular cuts

more statistics, somewhat better sensitivity.

Overall: less separation between models, but

Particle flow:

OPAL Preliminary

Colo(u)r Reconnection in W Decays (page 19) results from ALEPH, DELPHI, L3, OPAL

ICHEP 2000, Osaka July 28, 2000

OPAL Results

Ratio flow between W's/within W's:

OPAL Preliminary

than cross check (b): Data: default analysis (a) prefers more CR

0 0 0

- 100: ~ 65% reconnection in SK I model (a): half-way between $k_i = 0.9$ and $k_i =$
- (b): best agreement with No CR

Sensitivity (effect/ostat) for OPAL at 189 GeV: Quality of QCD background MC in (a)?

Outlook: All data, all expts: sensitivity to be gained! Systematics small, not limit tion.	SK I $(k_i = 100)$ SK I $(k_i = 0.9)$ SK II SK II' AR 2 AR 3	Sample
ned!	95 % 35 % 20 % 50 %	$P_{\rm reco}$
all expts: factor 3.5 in ined! not limiting combina-		Sensitivity

W Mass Shifts

Back to electroweak physics: what are the effects on $M_{
m W}$ in the qqqq channel?

Questions to be addressed:

- What are the estimates of the individual expts. for the shift in M_W^{qqqq} due to the various CR models?
- If these estimates differ, how much is due to CR model parameters, fragmentation model parameters, W mass analysis?
- What correlation should be used in average?
- What can particle flow tell us?

Common MC event samples generated (No CR and SK I), passed through detector-simulation, selection and analysis of the 4 expts.

Conclusions:

- lacktriangle Shifts in $M_{
 m W}^{qqqq}$ are identical for the 4 expts.
- ♦ Correlation in shift is ~100%

Individual experimental estimates of shifts in $M_{ m W}^{qqqq}$ (MeV):

AR 2 +87 AR 3 +14 HERWIG		SK I +6
+87 ± 17 (50.3%) +143 ± 27 (62.3%)		
+106 ± 26 +170 ± 26	$(k_i = 0.6)$ $-5 \pm 15 (32.4\%)$ $-33 \pm 15 (28.8\%)$	L3 +29 ± 15 (32.1%)
+28 ± 6 +55 ± 6	$(k_i = 0.65)$ -2 ± 5	DELPHI +46 ± 2 (35.9%)
+21 ± 19 +34 ± 34 +20 ± 10	$(k_i = 0.65)$ $+6 \pm 8 (29.2\%)$ $+4 \pm 8 (26.7\%)$	ALEPH +30 ± 10 (29.2%)

Between brackets: fraction of reconnected events.

There are certainly differences due to different CR and fragmentation model parameters.

⇒ LEP-wide collaboration. Example: Parton shower cutoff m_{θ} (O: 1.9 GeV, L: 1.0 GeV, D: 1.5 GeV, A: 1.5 GeV).

For ICHEP 2000: CR systematic error 50 MeV, fully correlated

Indiv. papers: O: 65 MeV, L: 50 MeV, D: 50 MeV, A: 30 MeV

Reconnection Probabilities SK

Particle Flow and $\Delta M_{ m W}^{qqqq}$

Particle-flow analysis has been shown to be sensitive to realistic CR models \Rightarrow Use to estimate $\Delta M_{\rm W}^{qqqq}$ from the data itself.

For models with free parameter, like SK I, make $\Delta M_{
m W}^{qqqq}$ calibration curve.

(← common LEP sample)

Then use particle flow measurement to calibrate $\Delta M_{
m W}^{qqqq}$.

Already: ALEPH 189-200 GeV: 1 σ upper limit:

$$k_i < 1.4 \implies P_{\rm reco} < 45\% \implies \Delta M_{\rm W}^{qqqq} < 40 \,{\rm MeV}$$

Outlook: 4 experiments, 600 pb⁻¹/expt., test SK I (35%) at 3.5 standard deviations, SK II at > 1 standard deviation

 \Rightarrow CR uncertainty on $M_{
m W}^{qqqq}$ likely to be significantly below 40 MeV, and actually measured from data!

Still many improvements under study: selections, sensitive variables quantifying particle flow.

W Width

Also measure W width Γ_W at LEP 2 from width of mass distributions.

CR also affects $\Gamma_{\rm W}$ measurements in qqqq channel.

Same models are used for estimates of $\Delta\Gamma_{W}$ in qqqq channel (preliminary):

OPAL: +68 MeV (SK I)
L3: +41 MeV (SK II)
DELPHI: +54 MeV (SK II)
ALEPH: +70 MeV (SK II')

 \Rightarrow Will also use particle flow analysis and calibration curve to estimate $\Delta\Gamma_W$ in qqqq channel from data.

Conclusions

- Charged multiplicity:
 - lacktriangle In agreement with expectations, no significant ΔN_{ch}
 - Difficult to improve sensitivity, only extreme models excluded
 - * Heavy hadrons: more effect, less statistics
- · Particle- and energy flow are shown to be more sensitive!
- Goal: to measure CR in data and use this as a calibration of M_W in the qqqq channel \Rightarrow significantly reduce model dependence.

Particle-flow measurements appear promising technique to fulfill that goal.

Already: L3 ($\sqrt{s}=189$ GeV): preference for modest (40%) reconnection, 1.7 σ above No CR scenario

ALEPH 189-200 GeV: $P_{\rm reco} < 45\% \Rightarrow \Delta M_{
m W}^{qqqq} < 40$ MeV

- ullet All experiments and all data combined: can test realistic models significantly: SK I (35%) at > 3 standard deviations. Reduce CR systematic error on $M_{
 m W}^{qqqq}$ significantly.
- Method is fresh and still being improved: selection, variables. All experiments have started such analyses.
- More studies are in progress: factorial moments,
 Lorentz-invariant variables from charged particles in W rest frames, ...
- ullet LEP data: $M_{
 m W}^{qqqq}-M_{
 m W}^{qq\ell
 u}=+5\pm51$ MeV
- LEP 2 data indicates no large CR effects.