

S. R. Magill
Argonne National Laboratory
for the ZEUS and CDF Collaborations

- Production Processes
- Results from CDF, ZEUS
- Summary

NLO QCD unable to describe fixed target and collider prompt photon experimental data

common problem is an excess in the data at low values of scaled photon Et (Xt = 2 Et,γ / √s)

The to effects of initial-state soft gluon adiation?

intrinsic kT effects (recoil effects), resummed ISR soft gluons in NLO QCD calculations

CDF pp--> 0+ X C UA2 pp--> 0+ X C R806 pp--> 0+ X C E706 pBe--> 0+ X FI WA70 \(\pi + p -> 0+ X FI UA6 pp--> 0+ X FI

Notivation - CDF data vs. NLO QCI

Notivation - Soft Gluon Resummation

references : E. Laenen, et al; PRL 84 (2000) C. Balazs, et al; PRD 57 (1998)

Motivation - Why it's Importar

Understanding the dynamic properties of partons in the proton by using prompt photon production to determine the effects of soft gluon ISR can lead to reduced pdf uncertainties at large x:

-> improved new physics searches at the Tevatron and LHC

Production Processes - yp and pp

pp->γ+jet + X at Tevatron

γp --> γ + jet + X at HERA

At Tevatron/HERA:

Prompt γ is a direct probe of the parton-level hard scattering process

Clean test of QCD since final state is less sensitive to hadronization

γ/π/η separation done by 1) comparing shower widths in the electromagnetic calorimeter, and 2) hit rate in preshower detector (independent methods)

lesolved Process (γ structure)

Direct Process pointlike incoming \(\gamma \)

Many resolved processes

kinematics favors g from proton and q from incoming photon

Only one LO direct process - γ q -> γ q

γ/π/η separation done by comparing shower widths in the electromagnetic calorimeter (preshower method coming soon)

DF Results - 630 and 1800 Ge

Event Selection :

isolation cut - ET < 2 GeV in a cone of central muon with PT > 12 GeV < Pτ, γ < 40 GeV

radius 0.4 units around photon candidate

Data dominated by diagram b) above at high Q values (lots of gluon evolution)

γp--> γ X

ZEUS 1996-97

-> photoproduction of prompt photons (Q² median ~10⁻³ GeV²)

- EM cluster in centra
- $0.2 < y (= E\gamma, in$ tion cone of 1 unit (ET < 0.1 ET,7)
- --> PYTHIA and HERWIG evaluated at parton showers in initial and final hadron level (LO matrix elements plus
- by Gordon (LG), Krawczyk and HO corrections to resolved terms (LG) Zembrzuski (K&Z); GRV photon pd

ZEUS

Separate into y ranges from lov to high y (~5 GeV to ~25 GeV incoming photons)

> Low ηγ peak moves to lower ηγ as y increases.

- All calculations and PYTHIA MC results lie below the data at low y and low ny.
- Could correspond to insufficient high x₇ partons in the resolved photon

Systematic study of recoil effects in the photon and proton at HERA

Events

--- rad+res

rad

rad+res+dir

ZEUS data

(PYTHIA 6.1)

 $\gamma p \rightarrow \gamma + Jet + X$

6

--> photoproduction of photon plus jet

production dominates High xy - direct photo-

Low xy - resolved photoproduction

PYTHIA MC includes:

0.25

0.5

0.75

X, meas

res - resolved photoproduction dir - direct photoproduction rad - dijet + radiative photon

MRSA pdfs for proton, GRV for photon default kt = 0.44 GeV

- y + jet

xγ > 0.9

Test of kT effects with recoilsensitive variables:

- p⊥ transverse momentum imbalance of photon and jet
- p|| longitudinal photon-jet momentum imbalance
- photon and jet

P

--> normalized to number of events after background subtraction

KT = 3 Ge

Summary

Prompt photon production has proven to be a valuable tool in the evaluation of QCD effects in the absence of hadronization.

of photon + jet) are consistent with the need for additional initial state radiation of soft gluons from the proton when compared to simulations modified Recent results from CDF ($\sqrt{s} = 630$ GeV) and ZEUS (direct photoproduction tions which include ISR soft gluon resummation. by inclusion of parton showers, additional intrinsic kT, or NLO QCD calcula-

our current understanding of the photon structure is also lacking - with additional photon + jet data, a systematic investigation of effects from both From ZEUS inclusive prompt photon production, there are indications that dominated by resolved photoproduction. the proton and photon can be done by extending the analysis to low xy -