Multiplicities & Factorial Moments

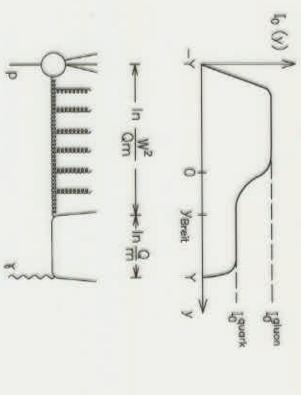
Nick Brook

University of Bristol

(on behalf of the ZEUS Collab.)

- Introduction & Motivation
- Results
- Conclusions

Naïve Quark Parton Model (QPM)



where \sqrt{s} is the eP centre of mass energy

Multiplicity Distributions

range (in lab. frame) $\langle n_{ch} \rangle$ as a a function of invariant mass (M_{eff}) in a fixed rapidity Investigation of dynamics of hadronisation process - study the

 M_{eff} is essentially measuring the rapidity "along" the gluon ladder

Gluon or quark initiated - measurement of colour charge

Factorial Moments

multiparticle production processes fractal dimension techniques (eg Rényi dimensions) to

investigation of cascading dynamics & "self-similarity" of branching processes

predictions exist within framework of pQCD

use of DLA and MLLA (in conjunction with LPHD)

[theoretical work: Dokshitzer, Ochs (MLLA)

Dremin, Wosiek (Factorial moments)]

Mathematical Interlude

Fractal dimension, F_D

$$M \sim l^{F_D}$$

- M is mass & l is length. $F_D = 1$ for a line, $F_D = 2$ for a square.

Koch Curve

→ self-similar curve with dimension $F_D = \ln(4)/\ln(3)$

Generalise to multi-fractals $F_D \rightarrow D_q$ (Rényi dimension)

(cf replace our homogenous stick with an inhomogenous one)

Factorial Moments

$$F_q(\Delta\Omega) = \langle n(n-1)...(n-q+1) \rangle / \langle n \rangle^q, \quad q = 2,3,...$$

of size $\Delta\Omega$ and <...> denotes average. where n is number of charged particles inside a phase-space region

rise follows power law - "intermittency" For uncorrelated particle production within $\Delta\Omega$, $F_q = 1$ (Poisson stats)

moments probe different dynamics depending on choice of $\Delta\Omega$

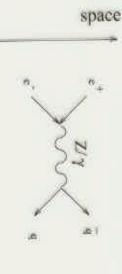
Kinematic Selections

Multiplicity: 1995 data (5.5 pb-1)

 $8 < Q^2 < 1200 \text{ GeV}^2$

70 < W < 260 GeV

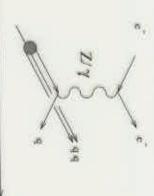
Particles with angular acceptance of |η(lab)| < 1.75

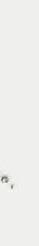

Moments: 96+97 (38.4 pb⁻¹)

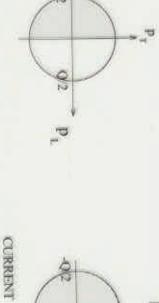
 $Q^2 > 1000 \,\text{GeV}^2$

Moments measured in current region of Breit frame

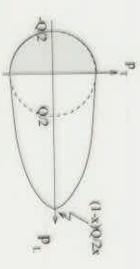
The Breit Frame 'Brickwall' frame





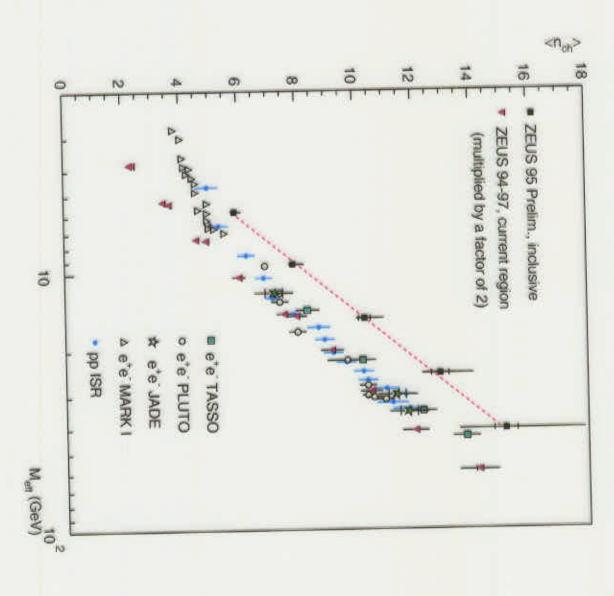

(a)

Phase space for e⁺e⁻



6

9



TARGET

annihilation evolves with $Q/2 = \sqrt{s/2}$

Current hemisphere of Breit frame evolves as Q/2

Current region $\equiv e^+e^$ annihilation

Data grows linearly with $\log(M_{eff})$

<n_{ch}> higher that e⁺e⁻ data ($M_{eff} = vs_{ee}$), low energy pp data and (Breit) current region in DIS ($M_{eff} = Q$)

Data compatible with picture of additional coherent gluon radiation due to (octet) colour charge

Systematic Checks

Event Selection:

- checks on y_e(2%), y_{JB}(3%), E-p_z(1%), vertex cut(1%)

Trk selection:

- tightening of p_T cut (1%) and η cut (2%)

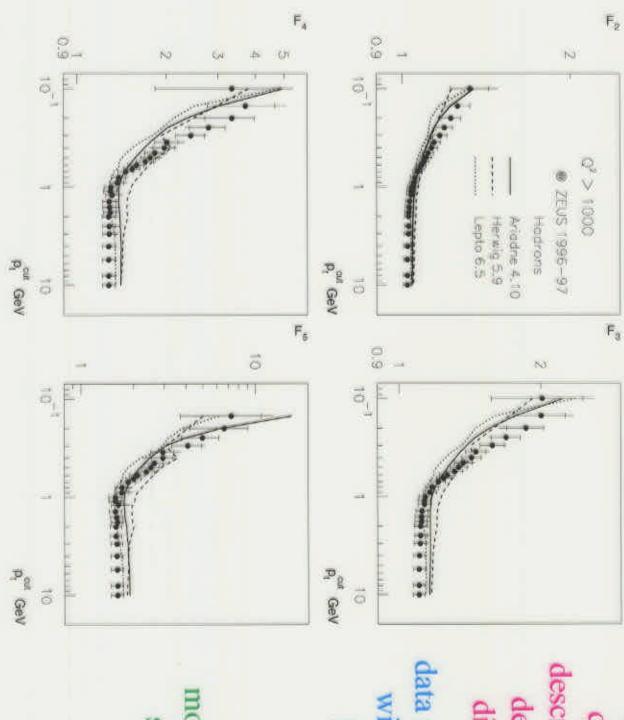
Monte Carlo dependence:

-LEPTO + POMPYT (up to ~16%)

Analytic QCD Results

$$\Omega \equiv p_T^{cut}$$
 or p^{cut} ie $p_T \stackrel{\checkmark}{>} p_T^{cut} (|p| \stackrel{\checkmark}{>} p^{cut})$

$$F_q(p_T^{cm}) \approx 1 + \frac{q(q-1) \ln(p_T^{cm}/Q_0)}{6 \ln(E/Q_0)}$$


$$F_q(p^{cm}) \approx \text{const} > 1$$

 $E = \text{jet energy}, Q_0 = \text{parton shower cut-off. DLLA approx}$

(Lupia, Ochs & Wosiek)

 p_T : prediction of correlations (presence of gluon enhances probability As $p_T \rightarrow Q_0$ correlations vanish due to coherence effects of emission of another one)

p: distbn of soft gluons remains non-Poisson

MC models
qualitatively
describe the data (in
detail there are
discrepancies)

data in disagreement with theoretical predictions

Result for momentum look similar to *p*,

Systematic Checks

Event Selection:

- checks on ye, yJB, E-pz, vertex cut

Trk selection:

- tightening of p_T cut and η cut

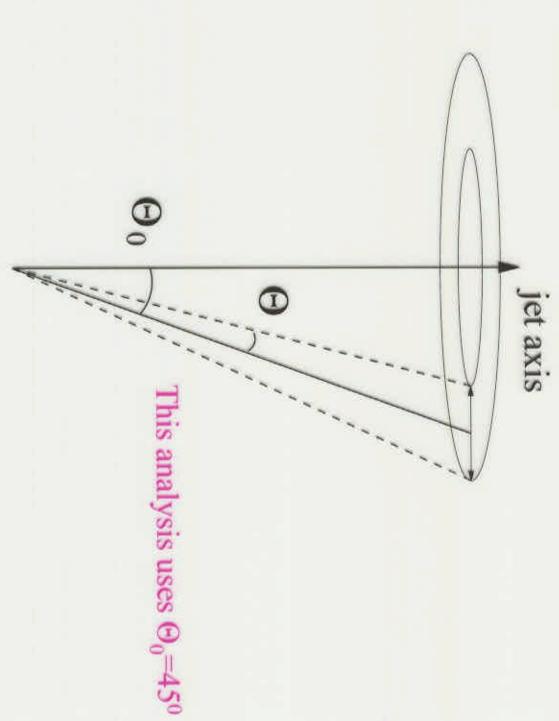
Typically a few % change - but can be ~20% at low p, p_T or high z

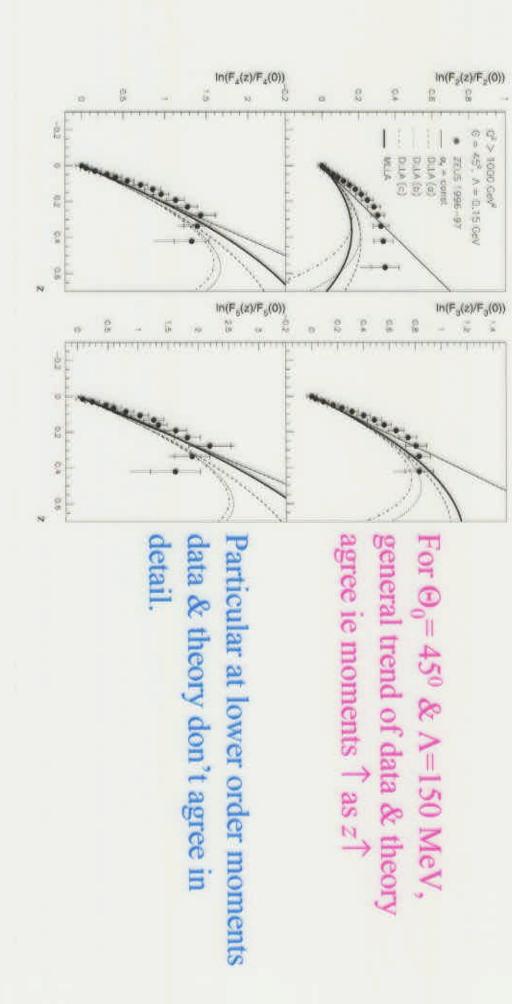
Analytic QCD Results

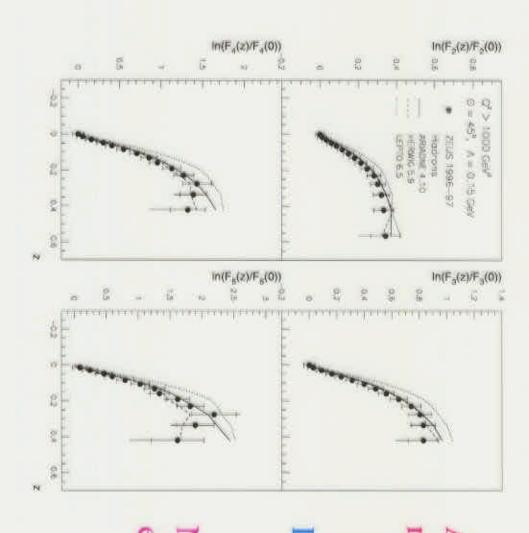
 $\Omega = \text{polar rings of size } \Theta \text{ around axis centred at } \Theta_0 \text{ (see fig.)}$

$$\ln \frac{F_q(z)}{F_q(0)} = z(1 - D_q)(q - 1) \ln \frac{E\Theta_0}{\Lambda}$$

E = jet energy, $\Theta_0 = \text{opening half angle of jet, } \Lambda = QCD scale$


$$z = \frac{\ln(\Theta_0/\Theta)}{\ln(E\Theta_0/\Lambda)}$$


Rényi dimensions, D_q Peschanski; Ochs & Wosiek) and in MLLA (Dokshitzer & Dremin) for the Number of predictions in DLA (Dokshitzer & Dremin; Brax, Meunier &


 $D_q \rightarrow 1$ for Poisson dist^{bn}

QCD predictions have $D_q = D_q(q,z)$

Defn of angular variable

ARIADNE & HERWIG
reproduce the data

EPTO overshoots the data

Non-negligible hadronisation effects

Conclusions

- •<n_{ch}> higher than e⁺e⁻, low energy pp data & (Breit) DIS current region - colour charge effect?
- Multiplicity factorial moments exhibit strong rise in restricted intervals as p_p p & Θ decreases
- Analytic calculations (for partons) do not show the same increase for the factorial moments
- MC models (generally) reproduce the data
- Substantial contribution from hadronisation LPHD hypothesis non-applicable