Structure Functions at Low Q^2 and Very Low x

A. Pellegrino (Argonne National Lab.)

on behalf of the H1 and ZEUS collaborations

XXX International Conf. on High Energy Physics, July 28 2000

- Introduction: kinematics and cross sections;
- the proton structure function F_2 at low Q^2 and very low x;
- logarithmic derivatives of F₂;
- summary and outlook.

Kinematics of e^+P scattering

$$Q^2 = -q^2 = -(k - k')^2$$
 negative squared

$$x = \frac{Q^2}{2p \cdot q}$$

$$y = \frac{p \cdot q}{p \cdot k}$$

$$W^2 = (q+p)^2 \simeq \frac{Q^2}{x}(1-x)$$
 squared γ^*P

$$s = (k+p)^2 \simeq 4E_eE_P$$
 squared e^+P CM

negative squared 4-momentum transfer; parton momentum fraction $(0 \le x \le 1)$; energy transfer fraction $(0 \le y \le 1)$;

x) squared γ^*P Center-of-Mass energy; squared e^+P CM energy (\sim 300 GeV);

 $Q^2 \simeq x \cdot y \cdot s$ \Rightarrow 2 independent variables

Cross section and structure functions

Differential NC e^+P cross section (OBE):

$$\frac{d\sigma^{NC}(e^{\pm}p)}{dx dQ^{2}} = \frac{2\pi\alpha^{2}}{x Q^{4}} Y_{+} \left[F_{2} - \frac{y^{2}}{Y_{+}} F_{L} \right]
= \Gamma \left[\sigma_{T}^{\gamma^{*}P} + \epsilon \sigma_{L}^{\gamma^{*}P} \right],$$

where:

$$Y_{\pm} = 1 \pm (1 - y)^2,$$

 $\Gamma = \alpha Y_{+}/(2\pi Q^2 y),$
 $\epsilon = 2(1 - y)/Y_{+}.$

Total γ^*P cross-section:

$$\sigma_{tot}^{\gamma^*P} \equiv \sigma_T^{\gamma^*P} + \sigma_L^{\gamma^*P}$$

$$= \frac{4\pi^2\alpha}{Q^4} \frac{4M^2x^2 + Q^2}{1 - x} F_2$$

$$\simeq \frac{4\pi^2\alpha}{Q^2} F_2.$$

 F_L = longitudinal structure function (0 in QPM);

$$F_{2} = F_{2}^{em} + \frac{Q^{2}}{Q^{2} + M_{z}^{2}} F_{2}^{int} + \frac{Q^{4}}{(Q^{2} + M_{z}^{2})^{2}} F_{2}^{wk};$$

$$= F_{2}^{em} (1 + \delta_{Z});$$

$$F_{2}^{em} = \sum_{f} e_{f}^{2} \cdot x \, q_{f}(x) \text{ in QPM.}$$

Experimental Range

- large coverage: 6 decade both in x and Q^2 ;
- very large Q² (electroweak unification and new physics) and very low Q² (transition to nonperturbative regime);
- medium Q² (precision tests of pQCD), but small overlap with fixed-target experiments
- HERA covers a much lower x domain (sensitivity to F_L and parton saturation effects), usually kinematically coupled to low Q².

Experimental access to low Q^2

Experimental approach to explore the low Q^2 -region:

$$Q^2 = 4E_e E'_e \cdot \sin^2 \frac{\vartheta'_e}{2}$$

- ⇒ Tag positron scattered under very small angles
- \Rightarrow Measure energy E_e and angle ϑ_e of the scattered positron

Method:

⇒ A: ZEUS Beam Pipe Calorimeter (BPC) & Tracker (BPT)

⇒ B: Events with shifted event vertex

Recent Low- Q^2 Data (BPT97)

- analysis reaches very low $Q^2 \sim 1 \, {\rm GeV^2}$, very low $x \sim 10^{-6}$ and some minimal overlap with fixed target (E665) data at $x \sim 10^{-3}$.
- average error: ±2.6% (stat), ±3.3% (syst);
- F_2 rises at low x even at the lowest Q^2 , but it's a <u>"soft" rise</u> compared to what observed at higher Q^2 .

Energy Dependence of σ^{γ^*P}

$$\sigma_{tot}^{\gamma^*P} = \frac{M_0^2}{M_0^2 + Q^2} \left\{ A_{\mathbb{R}} \left(W^2 \right)^{\alpha_{\mathbb{R}} - 1} + A_{\mathbb{P}} \left(W^2 \right)^{\alpha_{\mathbb{P}} - 1} \right\} \tag{1}$$

$$\sigma_{tot}^{\gamma^*P} \simeq \frac{4\pi^2\alpha}{Q^2} F_2$$

$$W^2 \simeq Q^2/x$$
;

 F_2 at low $x \Leftrightarrow \sigma_{tot}^{\gamma^*P}$ at high energy

 σ^{γ^*P} rises with energy even at the lowest Q^2 , but it's rise is less steep ("soft"):

low Q^2 : $\sigma^{\gamma^*P} \propto (W^2)^{0.08}$; high Q^2 : $\sigma^{\gamma^*P} \propto (W^2)^{0.2 \div 0.4}$

smooth "transition" around $Q^2 \sim 1 \, \text{GeV}^2$

Q^2 Dependence of σ^{γ^*P}

ZEUS 1997 (Preliminary)

conservation of e.m. current $(q_{\mu}W^{\mu\nu}=0)$ implies that the singularities of $W^{\mu\nu}$ for $q^2 \rightarrow 0$ cannot be real:

scaling cannot be valid at low Q^2 : $F_2 = \mathcal{O}(q^2)$

Experimentally

$$\sigma_{tot}^{\gamma P} = \lim_{Q^2 \to 0} \frac{4\pi^2 \alpha}{Q^2} \, F_2$$

is known to be finite

However, the <u>scale</u> for this "transition" is <u>NOT</u> theoretically or experimentally <u>specified!</u>

HERA data show that σ^{γ^*P} falls approximately like $1/Q^2$ at high Q^2 , but starts smoothly flattening off at lower $Q^2 \sim 1 \, \text{GeV}^2$.

Overview of F_2 Q^2 Evolution

Fit the form $\alpha(x) + \beta(x) t + \gamma(x) t^2$ $(t \equiv \log_{10} Q^2)$ to the F_2 data at each value of x (solid lines)

 $[\partial \ln F_2/\partial \ln(Q^2)]$ can be determined as $\beta(x) + \gamma(x) t$

Fixed $W = Q^2(1/x - 1)$ points on the parameterization denoted by the dashed lines: note the distortion in the fixed W lines that occurs around $x = 10^{-4}$ at relatively high $Q^2 \sim 5 \,\mathrm{GeV}^2$ and at W above 85 GeV.

The logarithmic Q^2 derivative $\partial \ln F_2/\partial \ln(Q^2)$

The obvious way to investigate the detailed behavior of F_2 in the transition region of low x and low Q2 is to study the logarithmic derivative

$$\frac{\partial \ln F_2}{\partial \ln(Q^2)}(x,Q^2)$$

pQCD predicts that (Prytz 93), in the limit of low x and LO:

(A)
$$\frac{\partial \ln F_2}{\partial \ln(Q^2)}(x/2, Q^2) \propto xg(x, Q^2)$$

i.e. the quark contribution can be neglected and the low x behavior of $\partial \ln F_2/\partial \ln(Q^2)$ is directly related to the low x behavior of the gluon density.

On the other hand, as discussed before F_2 must vanish like Q^2 for $Q^2 \rightarrow 0$, and thus at sufficiently low Q2:

(B)
$$\frac{\partial \ln F_2}{\partial \ln(Q^2)}(x/2, Q^2) \propto Q^2 \sigma_0$$

Provided that $g(x,Q^2)$ has a weak Q^2 dependence and σ_0 a weak energy dependence, the x, Q^2 behavior of $\partial \ln F_2/\partial \ln(Q^2)$ for constant W should clarify the transition $(A) \rightarrow (B)$

$\partial \ln F_2/\partial \ln(Q^2)$

at high Q^2 , $\partial \ln F_2/\partial \ln(Q^2)$ falls with x (power-like behavior of $g(x,Q^2)$) and tends to become independent of W at high x, according to (A);

pQCD (yellow band) provides a good description of the $\partial \ln F_2/\partial \ln(Q^2)$ data down to $Q^2 \simeq 3 \, \text{GeV}^2$

$\partial \ln F_2/\partial \ln(Q^2)$ (cont'd)

at low Q^2 , $\partial \ln F_2/\partial \ln(Q^2)$ falls with Q^2 and tends to become independent of W, according to (B);

the constant-W curves exhibit a characteristic maximum at relatively high Q^2 of 2-6 GeV² for W > 85 GeV (0.0005 < x < 0.003).

A. Pellegrino (Argonne National Lab.), ICHEP2000, July 28 2000

12

Summary and Outlook

- HERA F_2 data down to $Q^2 = 0.045 \text{ GeV}^2$ with statistical precision and systematic accuracy;
- soft (hadron-like) energy dependence of $\sigma_{tot}^{\gamma^*p}$ observed at low Q^2 ;
- flattening of the Q^2 dependence of $\sigma_{tot}^{\gamma^*p}$ (expected by current conservation toward the photoproduction limit) observed at low Q^2 ;
- the logarithmic Q^2 derivative of $F_2 \partial \ln F_2/\partial \ln (Q^2)$ illustrates well the transition in the x and Q^2 dependence of F_2 around a Q^2 of $2-6\,\mathrm{GeV}^2$;
- HERA data, spanning six orders of magnitude both in x and Q², illustrate in a continuous way the transition from the perturbative to the nonperturbative regime, and thus provide the ideal input for the understanding of the dynamical mechanisms underlying this transition.