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Abstract

Some exact static solutions of the SU(2) Yang-Mills-
Higgs theory are presented. These solutions satisfy the
first order Bogomol nyi equations, and possess infinite en-
ergies. They are axially symmetric and could possibly
represent monopoles and an antimonopole sitting on the
z-axis.
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1 INTRODUCTION
The theory of the SU(2) Yang-Mills-Higes field is a well known

subject with a large spectrum of literature written on it. The the
ory became of interest when 't Hooft |1] and Polykov [ _
the monopole solution in the mid-geventies. Much work had been
lone on this subject since then. This field theory, with the Higes
field in the adjoint representation, has been shown to possess both
the magnetic monopole and multimonopole solutions, Solutions of
a unit magnetic charge are spherically symmetric [1] - 5], whereas
multimonopole solutions possess at most axial symmetry [7] - [10].
Asymmetric multimonopole solutions are also shown to exst [11],

Iu the limit of vanishing Higgs potential, monopole and mul-
timonopole solutions had been shown to exist which satisty the
first, order Bogomol'nyi equations [12] as well as the second order
Euler-Lagrange equations. The solutions satislying this condition
which is sometimes known as the Bogomol'nyi condition (12}, [13]
or the Bogomol'nyi- Prasad-Sommerfield (BPS) limit [4], have min-
imal energies, saturating precisely the Bogomol'nyi bound.

Exact monopole and multimonopole solutions safisfying the BPS
limit are lknown 4], [8] - [10]. However, only numerical | monopole
121, [5] amd axially symmetric multimonepole [14] solutions are
known when the Higgs potential is finite. Asyimmetric multi-
monopole %ulutiona are @nly I{ﬂcwn numencally everl m the BP5
limit [11]. Nu al ax i |
solutions which do not z.ﬂ.usfy the_B_ogc:-mol nyi oo»ndmgg are re-
cently shown Lo exist [15]. These non-Bogomol'nyi solutions exist
both in the limit of a vanishing Higgs potential as well as in the
presence of a finite Higes potential.

In this work, we examined the SU
when the Iiges potential vanishes.

In fact the scalar field here




is taken to have no mass or self interaction. We found that the
bU(’?) Yang—Mlllb-Hzg;gs theory du possess a whole famﬂy of st.a.’ru,

iﬁni’ne energies. Thﬂ}’ are a_.ma.llz szmmatm a.nd muid wibly

represent monopoles and an antimonopole sitting on the z-axis.

We briefly review the SU(2) Yang-Mills-Higgs theory in the next
section. We present some ol our exact solutions in section 3. In
section 4, we give a discussion on the magnetic flux of one of the
exact solutions. We end with some comments on our present work
and the future work that can be done in the final section.

2 SU(2) YANG-MILLS-HIGGS THEORY

The SU(2) Yang-Mills-Higps Lagrangian in 3-+1 dimensions is

= lF"‘ f i ID“'-‘IJ",D P* 1;3 ¢ Pp* mﬂ)ﬂ' (1)
==gfwlf T3 o8 — AE )

where m is the Higes field mass, and 8 the strength of the Higgs
potential, are constants. The vacuum expectation value of the
Higgs field is then 7. The covariant derivative of the Higgs field

Is

D0 = dud® + " A} P, (2)
and A7 is the gauge potential. The gauge field strength tensor is

F& =0 A% — 8,A% + AL AC. (3)

The gauge field coupling constant g is set to one and the metric

used is Gy = (= 4+ ++). The SU(2 ) sroup indices a, b, ¢ run from
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| to 3 and the spatial indices p, v, @ =0, 1,2, and 3 in Minkowski
space.

The equations of motion that follow from the Lagrangian (1) are

D*FY, = 8,F5, + A" F;, = &9 D, ¥, (4)
and
py  m*
DD, " = —p9"(9'9" — —-). (5)

The conserved energy of the system which is obtained from the
Lagrangian (1) as usual, reduces for the static solutions with Aj =
0, to

N R S m? )
E = f d°r (“FS-F”J + =D, P D'"P* 4 Eﬂ(@dq’u i ':b—}l ) = (6)

A 2
Here we use the indices 4,k to run from 1, 2, and 3 in three
space.
', Hooft proposed that the tensor,

.F?#p _ 3‘3‘4“ ot 3;;.4“ — Eabﬂ(i’ﬂa:pé’)ba};&)ﬁr (-}’)

where A, = @“A-g, the unit vector §¢ = % and the Higgs field

magnitude |®| = V&%, be identified with the electromagnetic
field tensor. The abelian electric field is £; = Fy,, and the abelian
magnetic field is B; = —36;,1F,,. The topological magnetic current

ky, = P & aona oo 8"@* 9PP* §° de, (8)



and the corresponding conserved magnetic charge is

e —————————

f rﬁa'ﬂ:ku = ; f E.jkﬁuﬁﬂa,' (tfs"&,-tiﬂ*’&pff‘) d*z

M =
s 8; Aoy (ere"D°0,0"0,9°)
= ﬁf d*o; B,. (9)

gnetic ansatz [15],

with gauge fields given by

I e 1 am 5 1 Saa 1 o
A;i = ?—‘Hmﬁ“rﬁ — ;Rg?‘ul‘,ﬁp o+ ;(l ' T]}t,b g — ;(1 == ‘I‘g)'@ qﬁ.u{lﬁ)

and the H'Egﬁ field given by

P = d; 7 + by 6° (1)
Simplifying the above ansatz (10) to By = R = R(#) and =

T = 7(r), leads to the gauge field strength,

L R I T
-r#y - ( (;'ERT'}‘F r (?ER b= ;ER cotd + ;—2'(_7' = 1)))

ﬂ(éyg’v - ﬁé.véﬂ)

6+ Lreoto+ Y + fﬂ(iﬂ:ﬂ)

r r? e o R
'(T:yd"# = ?:F{ﬁp:]
¢ 1. - e ~
_it (A s~ B) (5, - 76, (13)
wE g
: feld to

and the covariant derivative of the Hig




~ ~ (1 1
D" = ¢ ¢, (T—‘I’g cot @ + ;R-‘i‘g + %*Tq-‘l)

i Ul 1
~f—6“"6'# (;—‘I?g T :T(bj) -+ 'Fa'l:# (‘qﬁ s 1&@2)
Al - |r‘

oo e B i (Lo 1
-i—ﬂﬂr‘u (q}‘! — ;!f(p‘l) + ?‘nﬂ# (;lqjl i ;T"I)z) : (13)

Prime means g;- and dot means _-b%. IB}r allowing the Higgs field
to be ®; = L(r) and @2 = 1R(0), where p(r) = *r(*r*! —
the equations of motion and (5) can be simplified to just two

umugled mrdinﬂ differential equations,

(%" +20(0 +1)*) + 2(R + Reot & + R*)(1 +4) =0, (14)

(R + Reot® — R(1 + cot*8) — 2R*cot § — 2R3)
$o(ri + (1 +9))R=0.  (15)
Equations (14) and (15) can [urther be reduced to
dinary differential equations of fivsl order,

just two or-

rip! + 1 + % = —p, (16)

R+ Reotf + R =p, (17)
where p 18 an arbitary constant. E_q uation glﬁ! is exactlx solvable
for all values of p. However equation (17) is only exactly solvable
when b takes the value 0 and -2. For other values of P, eguatian




first order differential equations and they are found to Eﬂ;fiﬁﬁ the
Bogomol'nyi first order equations , that is,

B{ = D;®*, (18)
In this paper, we would like to focus only on the exact solution
when p= —2. In this case, the exact solution to equation (16) is
eyr*la—1) = (@ + 1) r— - S
L - =Ty = 1 == 1 —
Y e a=\(1-4) »<3(19)
R
eyr &
= : . pi=—2 20
'(c:rr'a . 1) o (20)
When p = —2, equation (17) has a particular solution,
R = R = —tand, (21)

Hence equation (17) can be reduced to the Bernoulli equation
[16], once & particular solution is known. Upon solving the resulfing
Bernoulli equation, we obtained the second exact solution,

. - “ 1 f =
R = Rf;ﬁ = —tané + (511] ) cos™ 6 (f:g + m + Intan E)) (22‘)

In solutions (20) and (22), ¢; and ez are arbitrary constants, and
solution R 18 more singular than solution Ry,.
The solutions (20

Ay = Al T+ Al

1 . A a
Ay, = - tan8(7*e, — 9"7,),
B O e PP o



where the integration constant ¢; is set to one. When » tends to
infinity, the gauge potentials (23) do not tend to a pure gauge, and
roaches zero, only A%, tends to a pure gauge but nol
The energy of the system which is given by

d{” —ee— e

E=[d’z(B!B), (24)
is not finite at the point » = 0 and along the plane 2 = 0.
It is noted that with the ansatz (10) and (11), 4, = $“4] = 0.
Hence the abelian electric field is zero and the abelian magnetic
field is independent of the gauge fields (23),

Hi — i €ijk Em&c ‘{E‘“ a_j&"b l’?;;‘i’c
.qp+h:cm,9) YR . (:f; +Rmt9) 'R -
= . - T‘ "II' - ".} 9,,:
( P U2+ R?) P2 G2 + B2
= B, + Bab;;
R 9((r* - 2) — (+* + 1) tan*4)
T ((r3 - 22 4 (% + 1) tan? @)Y
27r tan @ _
By = 373 (25)

((T‘ - r’)"' - f'r + ].)‘E tan® 19:)
4 THE MAGNETIC FLUX

We would like to define the abelian field magnetic flux as

= daM = }(dga' B,
= 2 [ Bi(r’sin0d6)y;. (26)
where M is the magnetic charge. We would also like to rewrite the
Higgs field of equation (11) from the spherical coordinate system
to the cylinderical coordinate system [15],




P = &, + 0, 8%,
= & p* + By 6%, (27)

where

'tf}l = Py sind -+ P 0088 = oS o
Dy = P cosh — Posing = |i1?] it . (28]

Hence sin e can be caleulated and shown to be

(r® —‘?)mﬁfb‘+(*r +1J$1nﬁltfu1ﬁ
S = 202 + (3 + 1) tan? 6

From equations (27) and (28), the unit vector of the Higgs field
becomes

(29)

sina =

$° = cosa p* +sina 6, (30)

and the abelian magnetic field can be written in the form

1 89 19
8 = _;:;6-?9- (sinea) r; + ;é— (sin r.t)t? (31)

Hence we can write the magnetic charge as

]
M = —zsinalf, (32)

and show that the magnetic | charge enclosed in the upper hemi-
sphere and the Tower hemis _pherc is one each and the magnetic
charge at the origin is negative one. Therefore the system carries
a net magnetic charge of one.
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5 COMMENTS

1. The exact magnetic solutions (20) and (21) have been shown
to r_t:: fesen«: two monu mie& a.nd an antimuna le sitting o1l the

the value of the parameter ¢; in equatmn (20) but the an

unmnﬂpule s position is fixed at the origin. A plot of the magnetic
flux lines for the monopoles-antimonopole configuration is given in

figure (1) when ¢; is equal to one.
2 In these exact solutions, the magnitude of the Hig

field ,

|®|

H
i
3 |

o 1 1._13_,*2'2~ 9 e
~1/‘¢r +R \Hr%l] + tan @, (33)
is zero at (r = V2.0 = () and (r = V3.6 = =) and these two

Zeros Corres aud to the positions of the two mana@le& of (.ha,rga

to the antimonopole of Lhm’fge negatwe one.

The energy density of the abelian ma
iB,B*, are concentrated at the origin » = (. a,nd a.lnng Lhe Z
axis af z = 2. that is at the points where the antimonopole
and the two monopoles are located. A plot of energy density £
versus p and z is shown in figure (2).

3. When the parameter p = —2, we can have two exact solutions
for R(@), that equations (21) and (22) but only one exact solution
(20) of 4 (r). The two different combinations of solutions represent
different physical configurations. Since the solutions with ¢ (r) and
R»(#) are more singular than the solutions with «(r) and R 1(8),
we choose not to discuss it in this paper but in later work.

4. The next exact solutions that we can obtain with the ansatz
10



(10) and (11) are when p = 0,

A
(¢ar — 1)

|
R = ~ s § .
: (eq8in 6 +sind In tan %) : (34)

tho

where c; and ¢y are arbitrary constants. In this case we notice that

g, R = 0) and (¢p = 0, Ry) are also solutions of the equations
of motlun (4) and (5). Hence we can linear superposed these two
sets of solutions to get the solutions (4, Rg) of equation (34).
Therefore linear superposition of nonlinear solutions is ossible,
when p = 0, to get more nonlinear solutions.

5. Only numerical solutions can be obtained for R(8), when p takes
value other than 0 and -2. These numerical solutions are zero at
8 = 7 and positively singular at @ = () for negative values of p
and negatively singular for positive values of p. Hence the possible
zeros of the Higes field lie on the negative z-axis.

6. The solutions 4 (r) fcr equation (16) are exact for all values of
p. For values of p c: L the exact solutions ¢(r) are smooth and
regular. When p = ; ﬂ;_ r) has two zeros; when p = 0, ¢(r) has
no zercs expect al iﬂﬁnity; and when p < 0, ¥(r) has enly one
zero. However when p > }, 4#(r) has an infinite number of zeros
and &re singular. A plot the solutions of ¥(r) for different values

of p < 1 i is shown in figure (3).

7. Further study of all the solutions mentioned in this paper, with
different values of the parameter p is on the way and will be given
in later work.
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7 FIGURE CAPTIONS
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Figure 1: A two dimensional vector plgt of the abelian magnetic dux versus p and z.
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Figure 3: A plot of the solution ¢(r) versus r for (1) p =7, () p 5 0, (3) p = -3, (4)
= =2, (5) p — —2 and (6) p = —6 when Lhe intogration constaut i set to unity.
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