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Quantum action for QCD is based
on the Lagrangian density /‘wia? G2y
1

L = — F¥Fy + B'9AY + %%“Bf‘

+ 10kx1 9D x9" + (i DY |, — mé™ )y

o Fj, =08A7 - 8,A%, + gf* A’ A%

o D%, = (5% +gf"A",)
o DYl = (6Y8, —igA®,(3/2)1 )

e ¥ =("£)V2 4y
= (7‘)2 =0, v"y +y vyt =21
o AEL %ﬁvi, (AT = A%, ATA- =0,..
The corresponding + projections of
the LF Dirac spinor are ¢+ = ATy
and ¢ = P4 + 9,9 = Y10 = Py + 4,
YEpr =0 ete.



Spinor field propagator on the LF
The quark field term in QCD Lagrangian is

(DY, — md)p = /30 A D T + @ (iy-DY | — m& !
+ L [(V2PDY_p I 4 (i DY | — mstiyp,d]

The minus components 1)’ are nondynamical ( La-

grange multiplier ) fields. We find the gauge covari-

ant constraint equation

iV2DY_tp 8 = (it DY | — P8y, 9 (1)

The ¢’ _ components may be eliminated in favor of

the dynamical components 'qbi
. ; _ jk
0-3(@) = 22 U@l A5 UGIAL)| 7 DM —my sy, )

(2)
Here, for a fixed 7, U = U(z|A-) is an N, x N, gauge
matrix in the fundamental representation of SU(N,)
and
O U(z|A-) = —igU(z]A-) A_(z), A_=A°_X/2 (3)
Formal solution:

U™, oHAL) = Uz, o |A_) Pexp { ~ig [ dy Ay, )}_
(4)



where P indicates the anti-path-ordering along the
longitudinal direction z7. U has a serm& expansmn
in the powers of the cauplmg constant. |

The free ﬁe:ld prnpagatur for 1., is determined from
the following quadratic terms in the Lagrangian (sup-
pressing the color index) density

i‘ﬁ‘&'p—faﬂlﬁ * "f)-a-T fi'}'ﬂ'T'J'ai = mwﬂ)'.w_ (5)

Here we have used the free field constraint equation
2i0_4¢_ = (iv-8,_ + m)y" . which determines the de-
pendent field v».. The equation of motion for the
independent component .. is nonlocal in the longitudi-

nal direction

80, + (m+ir 0y o (m +iv 0 )7 | v, =0 (6)

The free field Hamiltonian formulation can be con-
structed by following the Dirac procedure. The con-
straint equation arises now as a second class con-
straint on the canonical phase space. The Dirac
bracket which takes care of these constraints is easi-
ly constructed. The effective free LF Hamiltonian is
found to be HY = —¢, (i7-8, — m)y)_ and the canon-
ical quantization performed by the correspondence
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of the Dirac brackets with the (anti-)commutators
leads to the following nonvanishing local anticommu-
tation relation

1

{e(ra™, 2), vl (ry, i = V2

A6z~ —y )8 (2 —gb).

(7)
on the LF.

Covariant Phase Space Factor on
the LF. Fourier transform of «(z)

e WTp =(pp-+m?) >0
o [d'p8(+p)(Ep7)6(p* — m?)
= [y dp* [ dp™ 0(p)0(+p7) 62p%p” — [m? + 5] )
= [ dp*dp*o(p*)/(2p")
o [dp8(xp5(p*-m?) = [PF/CE,); Ep=+/F+m?>0
(Srivastava and Sudarshan, 1958).

A distinguishing feature in the case of the LF is
thus the appearence of 6(p™)/(2p") in the phase s-
pace factor. Such considerations are relevant, for ex-
ample, in writing the Fourier transform of the fields
and the discussion of chiral boson theory.



Fourier transform of ¢(z) over the complete set of
linearly independent plane wave solutions of the free
Dirac equation, say, for p* > 0 may be written as

Vi) = J{—;— [ dap” ol )\Jr B3 e~ + 4y

(8)
A very useful fnrm (Srivastava, 1995) of the so-
lution for the fnur-spmnrs in the context of the LF

quantization is
1

r —

gl ==
where the constant spinors @) satisfy +%a") = #)
and 53" = rii®) with 5 = iv'9? and r = +. Its A+
prBJaetinn is by comstruction very simple, ") (p) =
(\/_p""/m] (A*#")) and they are eigenstates of I: as
well while the @) correspond to the rest frame spinors
for which /2p* = m.

The anticommutation relations of the spinor field
are satisfied if the creation and the annihilation op-
erators are assumed to satisfy the canonical anticom-
mutation relations, with the nonvanishing ones giv-
en by: {67(p), 6" ()} = {d"p),d" ()} = 6.8 ~
p)e%(p- — pt).

[V2p*AT + (m + v p)A| @ (9)



¢« The free propagator

<U| T(¥alz)] 5(0)) |0>
= (01 [6(r) 9+ a(2)¥} 5(0) — (=)L 5(0): 4()] 0)

4
- T | e dg*o(¢*) [otr)e- — b(-r)e]
where 4, B = 1.4 label the spinor components.

The only relevant differences, compared with the
case of the scalar field, are, apart from the appear-
ance of the projection operator, the chsence of the
factor (1/2¢7) in the integrand and the negative sign
of the second term in the fermionic case. They,

however, compensate, and the standard manipulations
to factor out the exponential give rise to the factor
6(¢") +6(—q")] which may be interpreted as unity in
the distribution theory sense, parallel to what we
find in the derivation of the scalar field propagator
on the LF. The straightforward use of the integral
representation 27i 0()e 7" = rdAe=7) /(p — X — i¢) of
#(+7), together with the standard manipulations in
the second term to factor out the exponential, leads



@

to Bty S

d“ \/'qmi- AT -—ig.:.:

— m? + if)

< OT(W" (@) ()]0 >= — (2 )4 f :
(10)
where we have renamed the dummy integration vari-
able originating from the integral representation of
6(+7) as ¢~ and d*¢ = d’¢*dg*dg~ with all integrations
ranging from —oo to oo.
The fermionic propagator is causal
and contains no instantaneous term found

traditionally in literature!
- Gauge field propagator /-, (.. >

The free abelian gauge theory described by the
following Lagrangian density

é— [(F+m P —(Fi3)? +2F, JHF_L]+:E_?@_+_A_+8_A++3 _LA'L_)+§B'21
(11)
The canounical momenta are 7™ = 0, 73 = 0, 7+ =
F_i, = = F._+ B. In the Dirac procedure the
primary constraints are n* =~ 0, 73 &~ 0 and g =
at—8_A; +0. A_ =0 etc. etc. We find

HF = _.% [ datde A, 040, A,  (12)
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SYSTEM IN z’ — - INSTANT FORM CONVEN-
TIONAL THEORY — EQUAL-TIME QUANTIZA-
TIZED THEORY

« LIGHT-FRONT QUANTIZATION IS EQUALLY VALID
AS THE CONVENTIONAL ONE ON GENERAL

CONSIDERATIONS ( SSR, 020,, CHsit. @gd,, LHERN- Siploxs -
Ff‘n!.éi’! Féygyfﬁ!&p Q& % &r GAT#@,

vo® ‘Quantum Action FOR

EQGU = ___F{.l HFWJ;{;+BHAQ -I-f‘ﬂpm f’-i—‘i"&? (iﬁ- -“D"J : ﬁbﬁ'ﬂ)d)

i
il Ly ‘/ e e E

F‘pmar field pr0pagator on the LF: :
(PR 241, 25003 2000, # s 4 *3""{“5')

e - —

B D, — b = /DY DY, —
+ 9 [3 V2AODY o T 4 (it DY — 'rnﬁz—'jjaj&..l,j]



éﬂj—aﬁ‘ C;@“’Z : ‘A‘: § (./E d...-.tw;;., Mg
i G leylons)
,MG?(’??‘)

o & Rellvmnd®: ;. HAEE 59

- uf‘zﬁ'w{ ad o v 2 § 6“"1’“? &
Jene WolS 2 361, Wﬁ--yaxy,fﬁa
A-Baocth , G-Nadelh 4 kSt e,
W* ; oL Qreadifpe , 111/

_‘7.’5;;;&4

o

Ly Gow fope 2 Pz (0 B PEED
N { w,jj @"‘"“”"ng_‘ ’:)
Lapepe 2T fasdoly p oDz uSH (188D

Benbeky, (uak, (o oty , BTt 30t 241 (')
idvaradl, = p Ju- 049 er20( %Y

!/V;jﬁﬁ‘", %ﬂ‘?] Hav

-

1 @"[? Mdl;f de greeq ) e dons







.-r [l
Ln L E -f_'_ng-‘r'd'nm:p&?; 3

[W
[ F-a+_ Fn’.h+_ %9 F'f'f.+J_ Fﬂ'-,J_ = Fﬂ.l% F{‘.r.'w] L BYAS Y

B2

te)
jﬁ"‘% ol {% [(F-+--)2 — (Fia)* + 215’.1__-1_F_¢.] + BA,}

v A%, like B® have no kinetic terms and they enter in
the action as auxiliary multiplier fields.
|
¢ | Dirac Procedure (Standard):

Constraints:

a2,
:ﬂ."f_ ﬁj Js

=t -0 A +0 A =10,

S=da +0 " = 0,

A_ =0

=1 -+ 6_.3‘1'4_ s
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Add the external gauge-fixing constraint to take care
of first class mp =~ (.

¢ Surviving dynamical variables

. A_L L= 42

. A, s omEoET VARIBBLE

3-(?5‘-444- “"3_1.#”1_1,) =)
e LF ' S
» Reduced Hamiltonian Hﬂ sy THE LiGHT- FEOVT:

.HQLF = ?];'deJ;EJ'd;’EF ((3_.5‘1.4..]2 it %FJ_J__IF-LJJ .

- We have retained A, for convenience in order to facil-

itate the comparasion with the the results obtained

in the covariant gauge.
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COMMUTATORS

THE COMMUTATORS OF A, FOLLOW TO BE
AS OBTAINED BY SUBSTITUTION:

Ay 24,
)

WHICH IMPLIES: THE LORENTZ CONDITION
HOLDS AS AN OPERATOR EQUATION IN THE
LF QUANTIZED QCD IN L.C. GAUGE.

THE FREE PROPAGATOR FOR MASSLESS GAUGE
FIELD ON THE LF:

=




Dy (k)

A ﬁ'b
o :' : a o !-J o " A} "gé 3 - __—'iii-if
< 0] T(A%,(2)4%,(0)) |0 > e [k o =

T gl n ki, + nik Kk
Diu(k) = Duylh) = =g+ =5 =
\—‘ﬁ_ e — l "
, Sousl m Lha Lo Fo
(ﬁ@ﬁﬂﬂn?) (M. ﬁwﬁ

ﬂ,uﬂz? .

e _
M =07 e =0

]

* TRenSVEL SF .}ﬂ:ﬁfﬁ poprol: / 5‘? Ml Lt
et wmaE it ‘ & Lantom ,f/““"}"‘ J

Dis(RYDY,(R) = Dy (R)D (k) = —D (k).

k¥ Dy (k) =0, 7Dy (k) = Dy (k) = 0,

Du(a) D" () Dula) = Diyla)

¢ WE MAY CHOOSE THE TWO PHYSICAL PO-
LARIZATION VECTORS AS

——— g i



o |£,u (k) = E{““(k) L}iﬂ-(kj (= 4, (2)

o= = : = CI B
S BB (k) = Dy (k) g B (BB, (k) = g
Li=1.2
KEL (k) =0, WhE = BH =0

a(k"
- [k dk* \/(2% ZB{“‘*(}:) [E:( (k" k" e ﬁub{ i

where the L.c. gauge A_ = ( along with the Lorentz
condition are already incorporated in it through the

very construction of the polarization vectors.

.- | LF QCD HAMILTONIAN IN L.C.
GAUGE:

ot



Hzf: M:F+ }{’J

where

H‘iﬂé s

—g iyt A, G glyd
+% fﬂhz ( E% Aﬂp s &a ﬁcﬁ“) A‘"?** A

2 »
+%ﬂ fﬂ.!#: fmii: Ab&Ad;.: A A%

Pt (A (AL g

Jci = ?153'1"4- (?fq)i‘}‘(,b-‘f 4 Fale A&ﬁ) e

. (é]?fm Self-energy corrections: J W

(q) = [

anl = T VAT (9)

'k ;

Hy

(g, &

.)a



Ii-fa,f'.(q! &) = [_ (2&: 4 g)h gﬂ{? 4 ( k Y q) £ g;w, 4 (2 ‘5}' 4 ﬁ:)'uﬂﬁ'ﬁ] Dq‘#:p('k)-
[—(2k +¢) 0™ + (& — q)"g"" + (20 + k)'g"" | Dok + g)

SIMPLIFIES TO ( Lf%(u =0)

/ v

(g k) = [~k +0/5*" ~ 200" +24°91Dagll)
(—(2k +4)" g™ — 274" + 24"\ Do sl + q)

For the divergent term we find ( suppressing [%"):

Dy, (q) T(q) Doslg) = cw%?%q-ﬁ' +16¢7q") Daslq)

I
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[ Is NOT TRANSVERSE

ad" = 2(¢*+2k.q) [(2k-+q)"+(q"g""~¢"¢"")] D’ 5(k-+q)D palk).

div g, 11(q) = —8q~¢*" D" (g) I*",

Quark-loop gluon self-energy correction:

= -zg th?ti

/- d’k T?‘[ﬁ“l-mf)’}‘“{;& + g 4mp)y”
@m)d [k~ mp[(k +9)* — m/7]

A 2 f Dl 2
div T, = b0 —— 1%3 s (e —¢'¢) ()

N Dy,(g) Hiﬁ (9) DM(%J

e e
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The contributions from I1_7 or I, are automatically

suppressed in view of D_, = D, = (0, as they should

in the l.c. gauge.

Dyu(g) (6°9" — ¢"9") Dusla) = =" Drs(9)-

CONCLUSIONS:

e The canonical quantization of l.e. gauge QCD
in the FRONT FORM theory has been discussed
employing the Dirac procedure to construct a self-
consistent LF Hamiltonian theory resulting from the

gauge-fixed BRS invariant quantum action.

¢ In the context of perturbation theory it incorpo-
rates in it the Lorentz gauge condition as an operator

equation as well.

e The interaction Hamiltonian, in which the ghosts

decouple, is re-expressed in a form closely resembling

13



the one in covariant theory, except for additional in-

stantaneous interactions, which can be treated sys-

tematically.

e The propagator of the dynamical 1. part of the
free fermionic propagator in the front form theory is
shown to be causal and not to contain instantaneous

terms.

e Transverse gauge field propagator for the mass-

less field is derived using the Dirac method and its

properties discussed.

o It differs from the ones found in the literature in

the context of equal-time l.c. gauge QCD.

e [t is in substance closer to the rules given by Lep-
age and Brodsky in 1980 in the context of old fash-
ioned perturbation theory on the LF.

e The dimensional regularization is very convenient
to handle both the 1/k* and the 1/k" singularities

14



which arise from the noncovariant piece of the gauge
field propagator. For the latter the causal ML pre-
scription seems to be naturally suggested if we are
using LF components. The power counting rules in
l.c. gauge become similar to those of the covariant

gauge.

e Electron-muon scattering is considered to illus-
trate the relevance of the instantaneous terms in the
interaction Hamiltonian. It also demonstrates that
the apparent lack of rotational invariance in the non-
covariant l.c. gauge or even Lorentz invariance is not
a problem when we employ the Dyson-Wick expan-

sion; the final result is Lorentz covaraint.

e The fact that in the front form theory the classical

Thomson scattering limit is obtained from a seagull

term at the tree level is significant since, it seems

difficult to build on the LF a systematic procedure

to obtain semiclassical approximation.

e We have made an ad hoc choice of only one (of the

15



family) of the characteristic LF hyperplanes, 2" =

const., in order to quantize the theory.

e The conclusions reached in the l.c. gauge here
reconfirm the conjecture made earlier, based on the
studies on S8SB, Schwinger model, Chiral Schwinger
model, LF QCD in covariant gauge, on the irrele-

vance, in the quantized theory, of the fact that the

hyperplanes 2= = 0 constitute characteristic surfaces
of hyperholic partial differential equation.
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