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1 Introduction

The Faddeev-Popov formula and the resulting BRST
symmetry provide a basis for the modern quanti-
zation of gauge theory.

A modified quantization scheme

| DA, {exp[—Sya(A,) — [ f(A,)dz]
/ | Dgexp[— | f Ag; dx]} (1.1)

with, for example,
f(Ap) = (m2/2)(An)2 (1.2)

has been recently analyzed in a large mass lim-
it in connection with the analysis of Gribov-type
complications. This gauge fixing in the large mass
limit is equivalent to the non-linear gauge
A=) (1.3)
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discussed by Dirac and Nambu many years ago.

The implementation of this non-linear gauge in-
cluding the treatment of the apparent shift of the
pole position has been discussd before. The above
gauge fixing has also been used in lattice gauge
theory.

We have recently shown that the above scheme
is in fact identical at least in the perturbative ac-
curacy to the conventional local Faddeev-Popov
formula

O BF(A), o OF(AD)
[DA, (8(D=5)] | DD =550}

x exp[—Sym(Ay)]

= [DA, J(Dﬂa‘gi")f) det{d|[ D" Jﬁﬁ)]/ og}

x exp[—Syu(Ay)] (1.4)

without taking the large mass limit, if one takes
into account the variation of the gauge field along
the entire gauge orbit parametrized by the gauge
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parameter g. The above equivalence is valid only
if the Gribov-type complications are ignored.

We here discuss the possible implications of the
above equivalence in a more general context of quan-
tum gauge symmetry, namely, BRST symmetry.

2 Abelian example
We first briefly illustrate the proof of the above e-

quivalence of (1.1) and (1.4) by using an example
of Abelian gauge theory,

Sp = —(1/4) [dz(8,A, — 8,A,)* (2.1)

for which we can work out everything explicitly.

In this note we exclusively work on Euclidean
theory with metric convention g, = (1,1,1,1).

As a simple and useful example, we choose the
gauge fixing function f(A4) = (1/2)A,A, and

D,‘(s‘%) — 8.4, (2.2)



04

Our claim above suggests the relation

Z= |[DA{exp[-So(AL) -/ dx-;-(Ai‘i)"’]
/| Dhexp |- [dz5(4l))

= [DASDBDeDcexp|—So(A;)
+ [(—iB3,A; + &(—0,0,)c)dz]
(2.3)

where the variable A% stands for the field vari-
able obtained from A, by a gauge transformation
parametrized by the gauge orbit parameter w.

To establish this result, we first evaluate

| Dhexp|— [ dz,(4%)
= | Dhexpl— [ ey (A% + 3,h)]
= [ Dhexp{~ [ da,[(45)" ~ 2(8,A9)h + h(~0,0,)h]}

1
det,/—8,0,

= [ DB
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1 wy2 : " 2
x exp{— [ dzZ[(A})" - 2(3,45) F@;B + B2}
1
=
x exp[— [ dz; (A”)2 - 3 )
(2-4)
where we defined |/—0,0,h = B.
Thus
Z = [DA;{det|—08,0,}
1 Eoh
x exp{—5So(A}) — —f@ A 5.3, 0, ALdz}
= [ DA“DBDeDecexp{—So(A2) (2.5)

| i 1 "
— = e W ,/_ dzx
which is invariant under the BRST transformation

6A;‘j = z'Aaﬂc, de=10
0é=AB, é6B=0 (2.6)
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with a Grassmann parameter A.

Note the appearance of the imaginary factor ¢ in
the term

in (2.5). )

We next rewrite the expression (2.5) as

f’DAp’DB”DADEDcJ( 58,0 ———=0,A4% — A)

x exp{—So(4,) — 5 f (B? + 2iAB)dx + [ &/—8,0,cdz}
o,

— “D “"

x exp{—So(4}) — 5 jA*da: + [&/-8,8,cdz}.  (2.8)

We note that we can compensate any variation of
JA by a suitable change of gauge parameter dw in-
side the é-function as
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r(ﬁ_a 00w = OA. (2.9)

By a repeated application of infinitesimal gauge
transformations combined with the invariance of
the path integral measure under these gauge trans-
formations, we can re-write the formula (2.8) as

1
[ DASDADEDeS( thapAp)

x exp{~So(43) — ; [ Nda + [ &/~0,D,edz)

. 1
= [DA; 'DEDC5( \/W )
x exp{—So(A4j) + [ &/—0,0,cdz}
— [ DA“DBDeDe
x exp{—So(A%) + [[~iB \/—;733 A2 + /=B, dda}
— [ DA“DBDEDe

x exp{—So(A2) + [[~iB,A% + &(—8,0,)cldz}. (2.10)



In the last stage of this equation, we re-defined the
auzriliary variables B and € as

B - B/-9,0,, ¢—&/-0,0, (2.11)

which is consistent with BRST symmetry and leaves
the path integral measure invariant. We have thus
established the desired result (2.3).

It is shown that this procedure works for the non-
Abelian case also, if the (ill-understood) Gribov-
type complications can be ignored such as in per-
turbative calculations.

3 Possible Implications

In the classical level, we traditionally consider

(0,4, — 8,4, — :mPA, A"  (3.1)

L= 5

:
-
as a Lagrangian for a massive vector theory, and

1 S
Lopr = =304, — B,4,) - 50,4 (32)

as an effective Lagrangian for Maxwell theory with
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a Feynman-type gauge fixing term added. The
physical meanings of these two Lagrangians are
thus completely different.

However, the analysis in Section 2 shows that the
Lagrangian (3.1) could in fact be regarded as a
gauge fixed Lagrangian of massless Maxwell field
in quantized theory.

To be explicit, by using (2.3), the Lagrangian (3.1)
may be regarded as an effective Lagrangian in

Z = [ DA{exp{] de[~ (8,4 — B,A,) - ym*AA])
/ [ Dhexpl~ [ da™ (4]

= [ DA, DBDeDcexp{ / dm[—i(aﬁA,, - c’;ku‘ﬂlj,‘)2

where we absorbed the factor m?® into the defini-
tion of B and é.

One can also analyze (3.2) by defining
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1
f(Ay) = 5(3;:1‘1”)2 (3.4)
in the modified quantization scheme (1.1).

The equality of (1.1) and (1.4) then gives

12ASD* 53 der(a(p L N g} xpl-50(4,)

= [ DA,(8,8"(8"A,)) det[d,8”8,8"] exp[—So(A,)]

= [ DA, ’DB’DEDC (3.5)
exp{—So(4,) + [ dz[-iBd,8"(8*A,) — &(8,8"9,0")c]}

After the re-definition of euziliary variables,
B8,8¥ -+ B, @0,0" — ¢, which preserves BRST
symmetry, (3.5) becomes

| DA, DBDEDe exp{—So(4,)
+ [dz[—-iB(8*A,) + &(—8,0")c]} (3.6)

which agrees with (2.8) and (3.3).
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We can thus assign an identical physical meaning
to two Lagrangians (3.1) and (3.2) in quantized
theory.

Similarly, the two classical Lagrangians related
to Yang-Mills fields

1 ks e L
£=—(8,4; — 0. AL + gf " ALA) — o ALA™
(3.7)
and
1 a o a c 1 i 3
Lefy = —3(0uA} — B, AL+ g f™ ALAT) - 5(%? ")
3.8)

could be assigned an identical physical meaning as
an effective gauge fixed Lagrangian associated with
the quantum theory defined by

| DADB“De*De” exp{—Syu(Aj)
+ [ de[—-iB*(9"AS) + 2*(—8,(D"c)"]}
(3.9)

which is invariant under BRST symmetry.

i
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We have illustrated that the apparent “massive
gauge field” in the classical level has no intrin-

sic physical meaning.

It can be interpreted either as a classical massive
(non-gauge) vector theory, or as a gauge-fixed ef-
fective Lagrangian for a massless gauge field.

In the framework of path integral, we have a certain
freedom in the choice of the path integral measure:

One choice of the measure

1 i
[ dusexp{f dal~ (0,45 — 0,45 + gf ™ AL ALY

2
m i @
I ALA)
1
1 Dg exp|— 1 - (Aue)?de]}
1 @ a [ &4
x exp{[ de[— (9,4, — 8,45 + g f AL ALY’

2
M L. aa

= [DA,

gives rise to a massless gauge theory,
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and the other choice

1 J :
[ duexp{] da[— (8,45 — 8,45 + gfAb AS)
m2 a Ad
—g A
1 o
= [DA, exp{/ dz[— 21"(3*“43 — 8,45 + gfa’bcAi’,,Ap)z

—?A;A““]} (3.11)

gives rise to a massive non-gauge vector theory.

A somewhat analogous situation arises when one
attempts to quantize the so-called anomalous gauge
theory: A suitable choice of the measure with a
Wess-Zumino term gives rise to a consistent quan-
tum theory, if not renormalizable.

From a view point of classical-quantum correspon-
dence, one can define a classical theory uniquely
starting from quantum theory by considering the
limit A — 0, but not the other way around in gen-
eral.
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In the context of the present interpretation of mas-
sive gauge fields, the massive gauge fields generat-
ed by the Higgs mechanism are exceptional and
quite different.

Since all the terms including the mass term are
gauge invariant, one can assign an intrinsic mean-
ing to the massive gauge field in Higgs mechanism.

3.1 Possible origin of gauge fields

It is a long standing question if one can generate
gauge fields from some more fundamental mech-
anism.

To our knowledge, however, there exists no defi-
nite convincing scheme so far. On the contrary,
there is a no-go theorem or several arguments a-
gainst such an attempt.

Apart from technical details, the basic argument a-
gainst the “dynamical” generation of gauge fields is
that the Lorentz invariant positive definite theory
cannot simply generate the negative metric states
associated with the time components of massless

14
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gauge fields.

In contrast, the massive “gauge fields” could be
generated dynamically.

In general, the dynamical generation of the La-
grangian of the structure

1 6 9o Aa be Ab 4cn\2 mgmz
E = _"(aﬁ.: 7 e 3;,‘4.“ ‘i“gfa 44.‘“.:4.:;) — ?(;4;‘;

: (3.12)

does not appear to be prohibited by general argu-
ments so far.

If one considers that the induced Lagrangian such
as (3.12) is a classical object which should be
quantized anew, one could regard -’!‘;(Aﬂ)z, which
breaks classical gauge symmetry, as a gauge fix-
ing term in the modified quantization scheme above.

In this interpretation, one might be allowed to say
that massless gauge fields are generated dynamical-
ly. Although a dynamical generation of pure gauge
fields is prohibited, a gauge fixed Lagrangian might

15



be allowed to be generated.

We note that the mechanism for generating mass-
less gauge fields by the violent random fluctuation
of gauge degrees of freedom at the beginning of the
universe is also closely related to the present obser-
vation.

An example of massive Abelian gauge field is an-
alyzed in compact gauge theory defined on the
lattice by Nielsen et al.. When one de-compactifies
the theory one may be able to apply our analysis
to their scheme also.

Incidentally, in the lattice simulation of QCD, the
mass term as a gauge fixing term has also been
used by Golterman et al..
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