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Analytic Quantization of Gravity A

In this talk will present a way of quantizing gravity theories in
the context of perturbation theory, with following properties:

1) Unitarity manifest.

2) Gauge invariance and Lorentz covariance of building blocks
are manifest.

3) No gauge fixing of the general coordinate invariance.

4) Makes explicit connection of gauge and gravity theories in
the context of perturbation theory.

5) Provides a powerful way for addressing the ultraviolet
properties of quantum gravity.

The formalism is not based on using gravity Hamiltonians or
Lagrangians but makes direct use of analytic properties of the
S-matrix plus tree-level string relations between gravity and
gauge theories.



Non-renormalizability of Quantum Gravity

Traditionally, perturbative gravity may be described in terms
of Feynman rules, derived from a path integral.

Power counting suggests that field theories of gravity are not
renormalizable and therefore not fundamental quantum
theories.

Non-renormalizability of Einstein gravity confirmed by explicit
two-loop calculations. — Goroff and Sagnotti (1986); van de
Ven (1992)

Supergravity better but still appears to be non-renormalizable.

Various authors concluded that supergravity would diverge at
three loops. Deser, Kay and Stelle; Kallosh; Howe and Stelle; Green,

Schwarz, Brink; and many others

Although believable, arguments are based on power counting
and not on direct calculations.

Possible loophole: Coefficient of divergences might vanish due
to a hidden symmetry.

We now have the tools to investigate this!

However first we need to completely reformulate perturbative
quantum gravity.



Problem with conventional perturbative gravity

Traditionally we start with a path integral and generate
Feynman rules.
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Background field gauges or superspace do not help enough.

The internal vertices in the background field method are
ordinary vertices. ~ 1037 terms in diagram!

We want to be able to calculate diagrams such as the above!



String Theory Intuition

Basic string theory fact:

closed string ~ (left-mover open string)

x (right-mover open string)

In the field theory or infinite string tension limit this should
imply

gravity ~ (gauge theory) x (gauge theory)

We will argue that this is a key property of perturbative
gravity.

1) How do we make this precise?
2) Can we use this to quantize gravity?
3) What can this teach us about (super) gravity?

4) How does this relate to the Einstein-Hilbert
Lagrangian?

In this talk we will address these issues.



Kawai-Lewellen-Tye Tree-Level Relations

At tree-level KLT have given a complete description of the
relationship between closed string amplitudes and open string
amplitudes.

In the field theory limit (o' — 0)
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where we have stripped all coupling constants. M,, is gravity
amplitude and A,, is color stripped gauge theory amplitude.

sij = (ki + k;)°

Gravity Gauge Gauge
Theory Theory

These relations hold for any external states.

‘Left’ Lorentz and spinor indices contract with ‘left’ ones and
‘night’ contract with ‘right’ ones.



Gravity in Terms of Gauge Theory

n~ #
Grayvity | Gauge Gauge
Theory Theory

Using this we can describe gravity with color stripped gauge
theory Feynman rules: Z.B., Abilio De Freitas and Henry Wong
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This contains all information on graviton scattering.



Sﬁm Heﬁcity Xu; Zhang and Chang & many others

Vector polarizations
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All required properties of polarization vectors satisfied:
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Notation
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Changes in reference momentum ¢ are equivalent to gauge
transformations.

Graviton polarization vectors are the squares of these!

erl =, 2=1+1

Leads to compact expressions for amplitudes.



Gravity Tree Amplitudes from Gauge Theory

We obtain amplitudes in any minimally coupled theory of
gravity to matter:
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Other tree amplitudes with fermions, gluons, gluinos, scalars,
gravitinos are just as simple to obtain!

We can recycle known gauge theory tree amplitudes into
gravity amplitudes!

We still need to quantize the theory,
i.e. include loops.




Example

Z.B. and Abilio De Freitas and Henry Wong
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Quantization via Unitarity

Bern, Dixon, Kosower

Basic property: The scattering matrix is unitary.

STs =1

We will use this well known property of the S-matrix to obtain
all guantum corrections.

Take S=1+:iT
St T =TT

- fur m

an=shell

Harder to calculate = Easier to calculate

2 Im

el e — gl

To maintain gauge invariance, sum over all Feynman diagrams
on either side of the cut.

-—c-HEj

SRS,

From unitarity we can obtain the imaginary parts of loop
amplitudes from tree amplitudes.
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To obtain the complete quantum S-matrix we also need real
parts, especially rational functions.

Generic form of a loop amplitude:

A ~ In(—s — i€) + rational + other logs

~ In(s) — im + rational + other logs

The im term is fixed by unitarity and the In(s) can be
reconstructed from this.

However rational terms seemingly can't be reconstructed. Well
known that dispersion relations have subtraction ambiguities.

Problem seems basic. Consider complex function
a(ln(s) —iw) + b

You can get a from imaginary part but not b.

But in fact we can get around this problem if we use analytic
properties as a functions of dimension!
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Analytic Properties for D # 4 e

: 1
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Has no imaginary part! How do we construct real rational
parts from nothing?

Magic Trick: Continue the amplitude to D = 4 — 2¢
dimensions.

From dimensional analysis in massless theories:
A.D:Q-ZE = fdé—pr A

e Z(Si)_E X rational; + - - -
i

- zmﬂﬁn&lﬁ.(l —elns) + -

Thus:
rational = Z rational;
;

From O(e) branch cuts can reconstruct O(¢°) rational terms.

Amazingly this allows us to perturbatively quantize gravity
theories without reference to a Lagrangian or Hamiltonian.

Proven technology — state of the art QCD calculations. See,
e.g., Z.B., L. Dixon, D.A. Kosower, Ann. Rev. Nucl. Part. Sci. 46:109
{(1996) [hep-ph/9602280].
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Four-Point ldentical Helicity QCD Example

Four identical helicity gluons with a scalar in the loop.
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Applying this equation at one-loop we have
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The t-channel cut is similar.



Z.B., Dinon, Perelstein and Rorowsky

Gravity Cuts

How do we calculate gravity loop amplitudes?
Ay

> O ¢

Two-particle sewing equation:

M (—L3, 1%, 2%, L)) x M™(—~L;, 3%, 4%, L,)
= s (A7(—L1, 17,27, L) x A7(L3, 37,4, —L,))
X (A (L2, 17,27, —Ly) x AT(L1,3",4%, - Ly))
Easy to evaluate using known QCD results.
M7 —L4, 17,27, Ls) x ML, 3%, 4%, L))
5[12] [34]? 1 1
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X [ : + - ]
(b2 — k3)? — p2 (L2 — kq)? — p?

Get scalar box integrals with power of 12 in the numerator.

The ¢- and u-channel formulas are similar. Final result:

ixt st 5 (8% + st + 1%

oneloop 1+ ot ot 4ty _
LR b= e Ul

where s = (kl + kg)g and t = (k‘] —+ k.-;)j
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N = 8 Supergravity Cuts

How do we calculate N = 8 supergravity amplitudes?

Two-particle sewing equation:

D M(—41,1,2,8) x M{(—£2,3,4,4)

N=8 states
=5 Y (AT(—0,1,2,6) x A7(£2,3,4, - 1))
N=4 states
X > (A7, 1,2, —£;) x A7*(£1,3,4, —£2))
V=4 states

Easy to evaluate using known N = 4 Yang-Mills results.

Z M;m(—ﬁi, 1,2, -gg) X M:r%(—'eﬂs 31 4’3 21)
N=8 states

1 1

(£ — ky)? & (£ — k.z)""']
1 1

(£ — ks3)? ® (L2 — ka)'z]

The t- and u-channel formulas are similar.

= stuM;"(1,2,3,4)[

3

This is all you need to iterate two-particle cuts to all loop
orders!

Algebra is amazingly simple.



Z.B... Dixon. Dunbar, Perelstein and Rozowsky
Two-Loop N =8 SUGRA
From 2 and 3 particle cuts we obtain exact two-loop result:
N e 3 -3
(s K)* + GK)*1 F2| 4+ perms
i 4 N4

where K = st Af*®. The two-loop divergences are:

: o 1 ™ .
~loop, D=T-2¢ : 2 2 2 gtree
Md. op th}lﬁ' = m“g(ﬁ + "+ u ) Stuﬂﬂ 5
—G 1 —13n . -
JMZ-IWP. D-——a—g"-‘jt P — _ | 3 tz " 2 o t h" TR 2
4 leds = P pory . TT ) stuM,

1
48¢ (47)" 5791500

— 538"t u”) stuM;™* .

(438(s® + ¢° + u%)

2~loop, D=11—2¢
My ’ |pole =

Counterterms are derivatives of
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For D = 5,6 the amplitude is finite contrary to expectations
from Howe and Stelle superspace power counting arguments.

Concrete example where previous superspace arguments point
to divergence which is actually not present. Also shows that
D = 11 supergravity is divergent! (Also see paper by Deser
and Seminara.)
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Power Counting Beyond Two Loops.

The two-particle cut sewing equation iterate to all loop orders!

.........

~

Power counting this subclass of contributions suggests the
following simple finiteness formula

10

b5

This formula indicates finiteness when previous superspace
arguments did not, e.g. D=4, L=3and D =5.6, L = 2.

For N = 8 sugra, the first D = 4 counterterm encountered in
the two-particle cuts occurs at 5 loops not 3 loops.

These results recently confirmed by Howe, Petrini and Stelle.

The relationship between gravity and gauge theory provides
new information on the divergence properties of gravity.

As another example, this relationship is also used by Dunbar,
Julia, Seminara and Trigiante (hep-th/9911158) to help in
their study of counterterms in less than maximal sugra.
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Lagrang‘ians Z.B. and Aaron Grant

Consider the Lagrangians
Eg’:‘:wit}' = \/§Ra EYM = ‘--Fj_u | i

In Lagrangian or Hamiltonian not obvious how gravity is
‘square’ of gauge theory.

For S matrix it is obvious:

Mim(lj 2_, 3, 4) = 3.1_214?‘&&(1, 2,_ 3, 4) Air%(lg 21 4-1 3)

We must find the right gauge choices and field variables.

Claim: To ‘factorize’ the Lorentz indices of gravitons in
Einstein-Hilbert Lagrangian to all orders take:

9uv = exp[v/2/(D — 2)¢] explh,.) ,

6= =\ g 6+ H0)

where ¢ is a dilaton. (In many cases dilaton decouples.) We
have checked the claim through O(kS,)



Three-Point Correspondence gt

Factorization is necessary but not sufficient. We want a more
explicit gravity ~ (gauge theory)? correspondence.

What Yang-Mills gauge do we want to match to?
Three-vertex is simplest in non-linear Gervais-Neveu gauge.
Lorp ~ Tr(8- A + A®)
The color-stripped 3 vertex is
V.o (K, ka, ks) = kin™ + kin™ + kin™

By performing further field redefinitions and by choosing
non-linear gravity gauge we can get a match.

1
Ly = H[ahw-hw.uvhw < hv#hﬁﬂuﬂhﬁmv]

which generates the vertex

V;:ﬁiﬁyaﬂw(kh k'?': kﬂr) = H[Vé‘;ﬁ(kh ‘325 383) X Vggﬂr(k'i, k;},, ka)

+ Ver! (k2, k1, k3) x V.fﬁ'*(kz, ki1, k3)]

This gravity 3 vertex which follows from the Einstein
Lagrangian manifestly exhibits the KLT factorization!



Future

1. General investigation of divergence properties of
gravity theories.

2. Deeper relation and reformulation of gravity???

3. Implication for classical solutions? Can more
general classical solutions be made to reflect
gravity ~ (gauge theory)??
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Summary

1. Gravity ~ (gauge theory)? important property of
perturbative gravity.

2. D-dimensional unitarity is a powerful way to perturbatively
quantize the theory.

3. Recycling is good!

4. N = 8 sugra is less divergent than previously thought, but
it does appear to diverge at 5 loops.

5. N =1, D = 11 supergravity diverges at two-loops.

6. We are now directly investigating UV divergence properties
of more general gravity theories. 2-loop calculations.

7. The Einstein-Hilbert Lagrangian can be rearranged to
reflect ‘left’-‘right’ factorization of amplitudes:
D o
Goge ' €T,

Gravity ~ (gauge theory)? can be exploited to develop a
better understanding of quantum gravity.



