Radiative Effects on Squark Pair Production at e^+e^- Colliders

with M. Drees, R.M. Godbole and S. Kraml

Outline

- Introduction
- Radiative effects
- Results
- Conclusions

Introduction

* to understand the SUSY breaking mechanism

precision measurement of masses and couplings

$$m_{\tilde{u}_L}^2 = M_{\tilde{Q}}^2 + m_u^2 + \cdots$$

- * Hadron colliders are good for discovery but not for precision measurements due to large backgrounds and cascade decays.
- * Our goal is to study how well squark masses can be measure in e^+e^- colliders.
- * At e^+e^- machines, masses can be determined through threshold scans or kinematical fittings.
- * Kinematical fittings allow to study many different particles and also to determine the masses of decay products.
- * We considered only the the case

$$\tilde{q} \longrightarrow q + \tilde{\chi}_1^0$$
 (stable)

* At e⁺e⁻machines

$$e^+e^- \rightarrow \tilde{q}\tilde{q}^*$$

 $\rightarrow q \tilde{\chi}_1^0 \bar{q} \tilde{\chi}_1^0$

Assuming R-parity conservation the $\tilde{\chi}_1^0$ leaves no signal in the detector.

* Feng and Finnell studied the jet energy distribution and the minimum squark mass distribution $m_{\tilde{q},min}$.

$$m_{\tilde{q},min}^{2} = E_{b}^{2} - |\vec{p}_{3}|^{2} - |\vec{p}_{4}|^{2} + 2|\vec{p}_{3}||\vec{p}_{4}|(\cos\gamma\cos\delta - \sin\gamma\sin\delta)$$

- * Considering only detector resolution, they concluded that we should be able to determined the squark mass with an error of 0.5% for squarks masses of 200 GeV at a collider with $\sqrt{s} = 500$ GeV and $\mathcal{L} = 20 \text{ fb}^{-1}$.
- ★ We updated their analysis including ISR of photons, emission of hard gluons during the pair production, and gluon emission in the squark decay. For "stops" we also included fragmentation effects.

4 04

Radiative effects

- * ISR radiation of photons was treated using the leading-log resummed effective e^{\pm} distribution function. We did not include beamstrahlung. The main effect of ISR is the cross section reduction by $\simeq 15\%$.
- * $e^+e^- \to \tilde{q}\tilde{q}^*g$: We regularized the IR divergences requiring $E_g \geq E_g^{min}$. We introduced QCD virtual corrections to $e^+e^- \to \tilde{q}\tilde{q}^*$ to cancel the dependence on the IR regulator. Hikasa
- * For $m_{\tilde{q}}=300$ GeV, $\sqrt{s}=800$ GeV, and $E_g^{min}=1$ GeV \implies 18% of all squark pairs are produced together with a "hard" gluon.
- *Gluon radiation in squark decay: we used the $\tilde{q} \to q \tilde{\chi}_1^0 g$ matrix element given by Hikasa-Nakamura. We regulated the IR divergences using a gluon mass m_g .
- * The QCD virtual corrections cancel the IR divergence, however we are left with UV ones. These are canceled taking into account the full QCD-SUSY corrections. \Longrightarrow the results depend on $\ln m_{\tilde{g}}$. (one

extra parameter)

- * Taking $m_g=1$ GeV, $m_{\tilde{\chi}}=50$ GeV, and $m_{\tilde{g}}=450$ GeV $\implies 90\%$ of all squark decays contain a gluon.
- * \tilde{t}_1 fragmentation: \tilde{t}_1 can be quite long-lived. It will then fragment into a "stop meson" before its decay. [Hikasa and Kobayashi]
- * We modeled \tilde{t}_1 fragmentation using the Peterson fragmentation function

$$D_{\tilde{t}}(x) = \frac{1}{N} \frac{1}{x \left(1 - \frac{1}{x} - \frac{\epsilon_{\tilde{t}}}{1 - x}\right)^2} \ ,$$

where $\epsilon_{\tilde{t}} = \epsilon/m_{\tilde{t}_1}^2$, with $\epsilon \sim 0.1$ to $0.5~{\rm GeV^2}$.

* Unfortunately the choice of the fragmentation variable x is ambiguous for massive particles. We can take, for instance,

$$x = x_E \equiv \frac{E_{\tilde{t}_M}}{E_{\tilde{t}_1}} = \frac{2E_{\tilde{t}_M}}{\sqrt{s}} ,$$

- *Energy-momentum conservation is only global

 fragmentation process changes the 4-momenta
 of all partons.
- * The final results are rather insensitive to the choice of x

Results

- * The emission of hard gluons can lead to final states with up to 5 visible partons.
- * We smeared the parton energy with a Gaussian error

$$\frac{\delta(E)}{E} = \frac{0.3}{\sqrt{E}} \oplus 0.01$$

- * We applied the following cuts:
 - Our acceptance region is defined by | cos θ| ≤ 0.90;
 - Using the Durham algorithm we group the partons into 2 jets;
 - The jet energies should be $E_j \ge 15$ GeV;
 - acoplanarity angle between the jets ≥ 30°;
 - missing transverse momentum $p_T > 56$ GeV.

* Jet energy distribution

- * Cuts distort the spectrum, eg small peak the the lower edge.
- $*\sigma = 17.0$ (11.7) fb before (after) cuts, including all effects.
- * ISR and detector resolution don't change the shape.
- * Gluon emission changes the shape.
- * Gluon emission increases σ by 24% (42%) before (after) cuts.

* $m_{\tilde{q},min}$ distribution:

- st small leakage beyond the nominal end point $(m_{ar{q}})$;
- st radiative effects broadens the distribution \implies increase the error on $m_{ ilde{q}}$.

* Adding fragmentation for stops:

- aco+freq.

- $*E_{jet}$ distribution slightly modified;
- $*m_{ ilde{q},min}$ spectrum gets broader.

less energy is lost with the LSP

* Fitting procedure: Generated a luminosity of 50 fb⁻¹ (852 events before cuts) and compared the data to 13 templates with different $m_{\tilde{q}} \implies \chi^2(m_{\tilde{q}})$.

*A parabola is fitted to $\chi^2(m_{\tilde{q}}) \implies$ its minimum \implies measured $m_{\tilde{q},0}$.

- * 1σ error: $\chi^2(m_{\tilde{q},0} \pm \delta m_{\tilde{q}}) = \chi^2_{min} + 1$.
- $*m_{\tilde{q},min}$ leads to better results than E_{jet} .
- * Just 50 fb⁻¹ are enough to have statistical errors on $m_{\tilde{q}}$ less than 1%.
- * Details of the jet finding algorithm are not important.

Conclusions

- * $m_{\tilde{q}}$ can be well determined even in the presence of radiative effects.
- * Radiative effects lead to new systematic errors, eg α_s .
- * We still have to study the effect of hadronization and uncertainties on the LSP mass.