Review on B^0 - $\overline{B^0}$ mixing and b-lifetimes measurements at CDF/LEP/SLD

Achille Stocchi (LAL-Orsay/CNRS-IN2P3)

In the last decade at LEP/SLD and CDF:

- New weakly decaying B-hadrons have been observed (B_s⁰, Λ_b, Ξ_b)
- The production and decay of B hadrons have been intensively studied :

$$\tau$$
, Δm , $\Delta \Gamma$

using inclusive and semi-exclusive decays.

This thanks to:

- the excellent performance of the machines.
- the excellent performance of the detectors:
 these measurements would have not been possible without the development of SILICON DETECTORS,
- the development of experimental/analysis techniques, conceived and improved within fruitful collaborations (LEP/SLD/CDF Working Groups)

b-Lifetime Measurements

All lifetimes of weakly decaying B hadrons have been precisely measured (apart for Ξ_b and Ω_b)

IMPORTANT TEST of B decay DYNAMICS

Techniques to separate B-hadrons

News since last year :

 $au(B_d^0)$ much improved ($D^*\ell$ (ALEPH,OPAL); incl. vtxs (DELPHI)) $au(B^+)$ improved (incl. vtxs (DELPHI))

$$au(B^0) = 1.548 \pm 0.021 \; \mathrm{ps}$$
 $au(B^+) = 1.647 \pm 0.021 \; \mathrm{ps}$

The hierarchy was correctly predicted !

 $\tau(B^+)/\tau(B^0) \to 3\sigma$ effect in agreement with theory $\tau(B_s^0)/\tau(B^0) \to 1\sigma$ diff. wrt theory \to new data needed..... Λ_b Problem \to the precision of the results push for a better understanding of the theory

Lifetime Difference : $\Delta\Gamma_s$

- · Benefit from the work done on lifetime
- Interest : $\frac{\Delta\Gamma}{\Delta m_s} \simeq \frac{3}{2}\pi(\frac{m_b^2}{m_t^2})$ (naively) \rightarrow possible visibility for $\Delta\Gamma_s$ Δm_s accessible via $\Delta\Gamma_s$ (important if Δm_s is too high)
- Caveat : Theory still uncertain.
 Recent result : ΔΓ_s/Γ_s = 0.047 ± 0.015 ± 0.016
 D.Becirevic, D.Meloni, A.Retico, V.Giménez, V.Lubicz, G.Martinelli, hep-ph/0006135

$$\Delta\Gamma_s/\Gamma_s = 0.16^{+0.16}_{-0.13}$$
 $\Delta\Gamma_s/\Gamma_s < 0.31$ at 95 % C.L. (assuming $au(B^0) = au(B^0_s)$)

$$B^0 - \overline{B^0}$$
 Oscillations

$$P_{\mathbf{B_q^0 \to B_q^0}(\overline{\mathbf{B}_q^0})} = \frac{1}{2}e^{-t/\tau_q}(1 \pm \cos\Delta\mathbf{m_q}t) \tag{1}$$

•
$$\Delta m_s \simeq 20 \times \Delta m_d$$
 ($20 \propto 1/\lambda^2$)

•
$$\frac{\xi^2}{\lambda^2} \frac{\Delta m_d}{\Delta m_s} = (1 - \bar{\rho})^2 + \bar{\eta}^2$$
; $\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$

$$B_d^0 - \overline{\mathsf{B}_d^0}$$
 Oscillations : Δm_d

A TextBook Plot!

 $\Delta m_d = 0.487 \pm 0.014 \text{ ps}^{-1}$ known with 2.9% precision !

$${
m B_s^0}-\overline{{
m B_S^0}}$$
 Oscillations : Δm_s

A lot of activity in the last few years.

For more details on the analyses see

→ T. Usher and P. Coyle talks

sensitivity 17.9 ps^{-1} was 14.7 ps^{-1} (last year) limit 14.9 ps^{-1} was 14.3 ps^{-1} (last year)

Probability of a background fluctuation ≥ observed one at any Ams ~ 2.5%

is a " 2.5σ signal" at about $17.5~\mathrm{ps}^{-1}$ the sensitivity has bridged over the signal

Evolution of Δm_s sensitivity

Unitarity Triangle

Measurement	$V_{CKM} imes$ other	Constraint
$b \to u/b \to c$	$ V_{ub}/V_{cb} ^2$	$\bar{\rho}^2 + \bar{\eta}^2$
Δm_d	$ V_{td} ^2 f_{B_d}^2 B_{B_d} f(m_t)$	$(1-\bar{\rho})^2+\bar{\eta}^2$
$\frac{\Delta m_d}{\Delta m_s}$	$\left \frac{V_{td}}{V_{ts}}\right ^2 \frac{f_{B_d}^2 B_{B_d}}{f_{B_s}^2 B_{B_s}}$	$(1-\bar{\rho})^2+\bar{\eta}^2$
ϵ_K	$f(A, \bar{\eta}, \bar{ ho}, B_K)$	$\propto \bar{\eta}(1-\bar{\rho})$

Importance of Oscillation Results

- . M. Civchini et al. ICHEP2000 paper
- · LEP/SLD/CDF Steering Groups

Results on $\bar{\rho}$ and $\bar{\eta}$

$$\bar{\rho} = 0.205 \pm 0.045$$

$$\bar{\eta} = 0.336 \pm 0.045$$

$$sin2\beta = 0.716 \pm 0.067$$

$$sin2\alpha = -0.29 \pm 0.27$$

$$\gamma = (58.5 \pm 7.1)^{\circ}$$

Conclusions

B lifetimes and oscillations have been intensively studied during the last 10 years at CDF/LEP/SLD and spectacular improvements have still been obtained THIS year AND IT IS NOT FINISHED YET!

All b-lifetimes known with high precision. $\tau(B^+)/\tau(B^0)$ Hierarchy has been observed

$$au(B^0) = 1.548 \pm 0.021 ps \rightarrow 1.4\%$$
 $au(B^+) = 1.647 \pm 0.021 ps \rightarrow 1.3\%$
 $au(B_s^0) = 1.464 \pm 0.057 ps \rightarrow 3.9\%$
 $au(\Lambda_b) = 1.208 \pm 0.051 ps \rightarrow 4.2\%$

The time dependence of the oscillations has been precisely measured:

$$\Delta m_d = 0.487 \pm 0.014 \; \mathrm{ps^{-1}} \! \!
ightarrow 2.9\%$$

 Δm_s Sensitivity at 17.9 ps^{-1} (last year was at 14.7 ps^{-1})

"a 2.5σ signal" at about 17.5 ps⁻¹

improvements can be still expected

The Unitarity triangle parameters are today already known with a good precision within the Standard Model:

$$\bar{\rho} = 0.205 \pm 0.045$$

$$\bar{\eta} = 0.336 \pm 0.045$$

$$sin2\beta = 0.716 \pm 0.067$$

$$sin2\alpha = -0.29 \pm 0.27$$

$$\gamma{=}(58.5\pm7.1)^o$$

