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Electroweak transitions mediating B̄ → Xsγ:
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∣∣∣∣∣ � 2% ∼ +200% ∼ −100%︸ ︷︷ ︸
In the amplitude, after
including LO QCD effects.

The decay B̄ → Xdγ is CKM suppressed with respect to
B̄ → Xsγ. Therefore, it does not make much difference whether it
is excluded or included in B̄ → Xno charmγ:
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If B̄ → Xdγ is included, one needs to remember that the perturbative
results for this decay are subject to at least ±30% non-perturbative
uncertainty ( ⇒ 2% uncertainty in B̄ → Xno charmγ).



The B̄ → Xsγ branching ratio has been measured
by CLEO [ Phys. Rev. Lett. 74 (1995) 2885, hep-ex/9908022]

and ALEPH [ Phys. Lett. B429 (1998) 169]. The (more
precise) CLEO result can be written as follows:

BR[B̄ → Xsγ] � BR[B̄ → Xno charmγ]

� (3.15 ± 0.35 ± 0.32 ± 0.26) × 10−4

+
∑

P=ψ,ψ′, ...
BR[B̄ → X

(1)
no charm P] × BR[P → X

(2)
no charm γ]

The intermediate ψ contribution in the latter term gives around
4 × 10−4, even when E ′

γ > 0.3mψ in the ψ rest-frame. The analogous
contribution from ψ′ is expected to be about 6 times smaller.

The effect of the photon energy cutoff Eγ > E0 in the B̄-meson rest

frame can be easily estimated when X
(1)
no charm is assumed to be massless

and the spin of ψ is assumed to be irrelevant. For E0 >
m2
ψ

2mB
� 0.91 GeV

one finds:{
BR[B̄ → X
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}
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The function b(x) for x > 0.6 can be found from the ancient MARK II

data [Phys. Rev. D23 (1981) 43]. A naive fit to their fig. 9 reads:

b(x) = (4.1 ± 0.8) × 10−2 n(x),

where

n(x) = C




0.2, for 0.6 < x < 0.7,
20
9 (1 − x)2, for 0.7 < x < 1,

and the normalization constant C is fixed by the requirement∫ 1
0.6 dx n(x) = 1.

Knowing b(x) for x > 0.6, one can calculate

r(E0) =
1

3.15 × 10−4
×

×
{
BR[B̄ → X

(1)
no charm ψ] ×BR[ψ → X

(2)
no charm γ]

}
Eγ>E0

for E0 > 0.3 mB � 1.6 GeV. The result is as follows:
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The B̄ → Xsγ photon spectrum:
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BR[B̄ → Xsγ] × 104

Eγ [GeV]

- - - with B̄ → Xsψ followed by ψ → X ′γ.
- - - without “ “ “ .

Present CLEO cut is Eγ > 2.1GeV . ⇒ Strong
sensitivity to unknown B̄-meson shape function.

Lowering the cut to ∼1.6 GeV would practically
remove the sensitivity to the shape function.
However, a careful subtraction of the interme-
diate ψ contribution would become necessary.



Examples of Feynman diagrams contributing to
b→ sγ at various orders in the renormalization-
group-improved perturbation theory:

A. γ B.

u, c, t u, c, t

b W s
αs ln M2

W

m2
b
: ∼ +50% in amplitude

∼ +100% in BR

C. D.

non − logarithmic logarithmic︸ ︷︷ ︸
∼ +20% in BR
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The effective Lagrangian:

L = LQCD×QED(u, d, s, c, b) +
4GF√

2
V ∗
tsVtb

8∑
i=1

Ci(µ)Oi

Oi =




(s̄Γic)(c̄Γ
′
ib), i = 1, 2, |Ci(mb)| ∼ 1

(s̄Γib)Σq(q̄Γ′
iq), i = 3, 4, 5, 6, |Ci(mb)| < 0.07

emb
16π2 s̄Lσ

µνbRFµν, i = 7, C7(mb) ∼ −0.3

gmb
16π2 s̄Lσ

µνT abRG
a
µν, i = 8, C8(mb) ∼ −0.15

Perturbative expansion of the Wilson coefficients:

Ci(µ) = C
(0)
i (µ) +

αs(µ)

4π
C

(1)
i (µ)

+
αem
αs(µ)

C
em(0)
i (µ) +

αem
4π sin2 θW

C
ew(1)
i (µ) + ...

C
(1)eff
7 (mb) � +0.5 ⇒ −4.9% in BR [C,D]

C
em(0)eff
7 (mb) � +0.03 ⇒ −0.8% in BR [E]

C
ew(0)eff
7 (mb) � +1.9 ⇒ −1.6% in BR [F]
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Once the Wilson coefficient are known, we need to find the B̄ → Xsγ
amplitude, i.e. the matrix elements of the effective Hamiltonian. This

can be done with help of OPE and HQET. We need to calculate:

ΣXs

∣∣∣∣∣C7〈Xsγ|O7|B̄〉 + C2〈Xsγ|O2|B̄〉 + ...
∣∣∣∣∣2

The “77” interference term can be related via optical theorem to the
imaginary part of the elastic forward scattering amplitude:

γ γ

q q

B̄ B̄Im{ } ≡ Im A

In this amplitude, we can perform OPE when
the photons are soft enough, i.e. when
|mB − 2Eγ| >> ΛQCD.

Im Eγ
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n
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∮
big circle dEγ E

n
γ A(Eγ)
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We have a double expansion:

ΣXsBR[B̄ → Xsγ]
Eγ>1 GeV

=


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
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

2

+ ...


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
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+ [ Contributions other than the “77” interference term].

There is no OPE for the latter term. However, operators containing
no charm quark are suppressed by their small Wilson coefficients.
As far as the operators containing the charm quark are concerned,
we know that their contribution at the leading order in αs can be
expressed as a power series:

c c

O2 O7

〈B̄| |B̄〉 =
Λ2

m2
c

∞∑
n=0

bn



mbΛ

m2
c



n
,

which can be truncated to the leading n = 0 term, because the co-
efficients bn decrease fast with n. The calculable n = 0 term makes
BR[B̄ → Xsγ] increase by around 3%. However, an analysis of non-
perturbative effects in the matrix elements of O1 and O2 at O(αs) is
missing. For instance:

hard

O2 O2

〈B̄| |B̄〉 = A1−loop + Bψ + C?,

where A1−loop stands for the very small (< 1% in BR) one-loop pertur-
bative contribution, Bψ is a part of the intermediate ψ contribution,
and C? denotes the remaining non-perturbative terms. C? would not
be numerically important if it was either suppressed by Λ/mc,b, or
small for other reasons, or could be absorbed into the intermediate
ψ contribution. Is any of those three possibilities realized?



Neglecting all the non-perturbative effects that
arise at order O(αs(mb)), we can write:

Γ[B̄ → Xsγ]subtracted ψ
Eγ>Ecut

Γ[B̄ → Xceν̄e]
� Γ[b→ Xsγ]perturbative NLO

Eγ>Ecut

Γ[b→ Xceν̄e]perturbative NLO
×

× [
1 + (O(Λ2/m2

b) � 1%) + (O(Λ2/m2
c) � 3%)

]
.

ForEcut = 1 GeV , one obtains:

BR[B̄ → Xsγ]
subtracted ψ
Eγ>Ecut

= (3.29 ± 0.33) × 10−4.

The dominant errors originate from O(α2
s)

effects, and from mc/mb in the semileptonic
decay (around 7% each).

Ecut = 1 GeV is not accessible experimentally.
We need the photon spectrum.



Electroweak transitions mediating B̄ → Xsl
+l−:

l νl l l l
γ, Z

W W
u, c, t u, c, t

b u, c, t s b s

In the effective Lagrangian, two operators need
to be included, in addition to those already present
in the B̄ → Xsγ analysis:

O9 =
e2

16π2
(s̄Lγµb)

(
l̄γµl

)

O10 =
e2

16π2
(s̄Lγµb)

(
l̄γµγ5l

)

Their Wilson coefficients are relatively large:

C9(mb) � +4.1

C10(mb) � −4.2



Dilepton mass spectrum in B̄ → Xsl
+l−.

(l = µ or e)
d
dŝ
BR[B̄ → Xsl

+l−]
in units 10−5
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ŝ =
(
ml+l−
mb

)2

- - - - - - - - - perturbative,
—————— with inclusion of non-perturbative cc̄

in the factorization approximation.

Region ŝ ∈ [0.05, 0.25]:

(i) Quite clean theoretically. However, the effect of B̄ → ψX(1) fol-
lowed by ψ → X(2)l+l− should be studied.

(ii) Sensitive to new physics in a different way than B̄ → Xsγ. For in-

stance, when the coefficient Ceff
7 (mb) changes sign, the integrated BR

in this region changes from 1.5× 10−6 to 3× 10−6. Thus, its sensitivity
to the sign of Ceff

7 is the same as that of leptonic forward-backward
or energy asymmetries.



Perturbative expansion of C9 and C10:

C9(µ) =
4π

αs(µ)
C

(−1)
9 (µ) + C

(0)
9 (µ) +

αs(µ)

4π
C

(1)
9 (µ) + ...

C10 = C
(0)
10 +

αs(MW )

4π
C

(1)
10 + ...

After a formal expansion in αs, the term C
(−1)
9 (µ) reproduces (the

dominant part of) the electroweak logarithm originating from pho-

tonic penguins with charm quark loops:

4π

αs(mb)
C

(−1)
9 (mb) =

4

9
ln
M 2

W

m2
b

+ O(αs)

Numerically C
(−1)
9 (mb) � 0.033 << 1 ⇒ 4π

αs(mb)
C

(−1)
9 (mb) � 2.

On the other hand, C
(0)
9 (mb) � 2.2. Consequently, the accuracy of

∼ 10% in the Wilson coefficients can be achieved only after including
the formally NNLO O(αs) terms ⇒ 2-loop matching and 3-loop
RGE evolution, as in B̄ → Xsγ.

Present status:
C

(−1)
9 (mb) and C

(0)
10 are known.

[B. Grinstein, M Savage and M.B. Wise, Nucl. Phys. B319 (1989) 271]

C
(0)
9 (mb) is known.
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[A.J. Buras and M. Münz, Phys. Rev. D52 (1995) 186]

C
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[G. Buchalla amd A.J. Buras, Nucl. Phys. B398 (1993) 285, B400 (1993) 225]
[M.M., J. Urban, Phys. Lett. B451 (1999) 161]

C
(1)
9 (mb) is known up to (small) 3-loop RGE effects.

[C. Bobeth, M.M. and J. Urban, Nucl. Phys. B574 (2000) 291]

Unfortunately, 2-loop matrix elements of the 4-quark operators are
not known...



Unfortunately, 2-loop matrix elements of the 4-quark operators are
not known...

γ�

c c

b s

The b → sγ calculation of Greub, Hurth and Wyler has to be gener-
alized to off-shell photons.

Present prediction:

BR[B̄ → Xsl
+l−]ŝ∈[0.05, 0.25]

= [(1.42 ± 0.19) − 0.02 + 0.06] × 10−6

= (1.46 ± 0.19) × 10−6,

perturbative Λ2/m2
c Λ2/m2

b

where only the perturbative uncertainty from µb-dependence has been
taken into account.

HQET corrections:
Λ2/m2

c:
[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594],
[J.-W. Chen, G. Rupak and M.J. Savage, Phys. Lett. B410 (1997) 285],

Λ2/m2
b:

[A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D49 (1994) 3367],
[G. Buchalla and G. Isidori, Nucl. Phys. B525 (1998) 333].

In those calculations, the quantity Ceff
9 was treated as a Wilson co-

efficient of a local operator, which it is not (contrary to Ceff
7 that

is relevant for B → Xsγ). An estimate of the accuracy of such an
approximation is necessary.



Dilepton mass spectrum in b → Xsl
+l−

for ŝ = (ml+l−/mb)
2 ∈ [0.05, 0.25].

Rl+l−
quark(ŝ) =

1

Γ[b → Xceν̄e]

d

dŝ
Γ(b → Xsl

+l−).

Rl+l−
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Conclusions:

1. B̄ → Xsγ
(i) Since the completion of NLO QCD calculation 4 years ago,

many new calculations have been made. They include evaluation of

non-perturbative Λ2/m2
c corrections and the leading electroweak cor-

rections. None of these results exceeds half of the overall ∼ 10% un-

certainty. They tend to cancel among each other. Therefore, the pre-
diction for BR[B̄ → Xsγ] remains almost the same: (3.29± 0.33)× 10−4.

(ii) This prediction agrees very well with the measurements of CLEO

and ALEPH, whose combined result is (3.14 ± 0.48) × 10−4.

(iii) Future measurements of B̄ → Xsγ should rely as little as pos-
sible on theoretical predictions for the precise shape of the photon
spectrum above Eγ ∼ 2 GeV. On the other hand, the intermediate ψ

background should be carefully subtracted for Eγ below ∼ 2 GeV.

(iv) A systematic analysis of non-perturbative effects at order O(αs)
is missing. Most probably, they do not exceed the overall ∼ 10% un-

certainty when the energy cutoff is between 1 and 2 GeV, and when
the intermediate ψ(′) contribution is subtracted.

2. B̄ → Xsl
+l−

(i) A calculation of O(αs) terms in all the Wilson coefficients has
been recently completed (up to small effects originating from 3-loop

RGE evolution of C9). However, the perturbative uncertainty re-
mains close to ∼ 13%, because the 2-loop matrix elements of the

4-quark operators are unknown.

(ii) Good control over non-perturbative effects can be achieved
in the region of low dilepton invariant mass (ŝ ∈ [0.05, 0.25]). The

present prediction for the branching ratio integrated over this region
is (1.46± 0.19)× 10−6. However, a careful analysis of non-perturbative
effects from intermediate cc̄ states (including ψ) is necessary.


