Status of theoretical $\bar{B} \rightarrow X_{s} \gamma$ and

$$
\bar{B} \rightarrow X_{s} l^{+} l^{-} \text {calculations }
$$

## Mikołaj Misiak, CERN / Warsaw Univ.

## Plan:

1. $\bar{B} \rightarrow X_{s} \gamma$
(i) Intermediate $\psi$ contributions
(ii) Perturbative calculations
(iii) Non-perturbative effects
(iv) Cuts on the photon spectrum
2. $\bar{B} \rightarrow X_{s} l^{+} l^{-}$
(i) Intermediate $\psi$ contributions
(ii) Perturbative calculations
(iii) Non-perturbative effects
(iv) Cuts on the dilepton invariant mass spectrum

Electroweak transitions mediating $\bar{B} \rightarrow X_{s} \gamma$ :


$\underbrace{\sim+200 \%}$


In the amplitude, after including LO QCD effects.

The decay $\bar{B} \rightarrow X_{d} \gamma$ is CKM suppressed with respect to $\bar{B} \rightarrow X_{s} \gamma$. Therefore, it does not make much difference whether it is excluded or included in $\bar{B} \rightarrow X_{\text {no charm }} \gamma$ :

$\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \simeq 1 \%$
$\left|\frac{V_{t d}}{V_{c b}}\right|^{2} \in[2.5 \%, 5 \%]$
If $\bar{B} \rightarrow X_{d} \gamma$ is included, one needs to remember that the perturbative results for this decay are subject to at least $\pm 30 \%$ non-perturbative uncertainty ( $\Rightarrow \mathbf{2 \%}$ uncertainty in $\bar{B} \rightarrow X_{\text {no charm }} \gamma$ ).

The $\bar{B} \rightarrow X_{s} \gamma$ branching ratio has been measured by CLEO [ Phys. Rev. Lett. 74 (1995) 2885, hep-ex/9908022] and ALEPH [ Phys. Lett. B429 (1998) 169]. The (more precise) CLEO result can be written as follows:
$\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right] \simeq B R\left[\bar{B} \rightarrow X_{\text {no charm }} \gamma\right]$

$$
\simeq(3.15 \pm 0.35 \pm 0.32 \pm 0.26) \times 10^{-4}
$$

$+\sum_{P=\psi, \psi^{\prime}, \ldots} \mathbf{B R}\left[\overline{\mathbf{B}} \rightarrow \mathbf{X}_{\text {no charm }}^{(1)} \mathbf{P}\right] \times \mathbf{B R}\left[\mathbf{P} \rightarrow \mathbf{X}_{\text {no charm }}^{(2)} \gamma\right]$
The intermediate $\psi$ contribution in the latter term gives around $4 \times 10^{-4}$, even when $E_{\gamma}^{\prime}>0.3 m_{\psi}$ in the $\psi$ rest-frame. The analogous contribution from $\psi^{\prime}$ is expected to be about 6 times smaller.

The effect of the photon energy cutoff $E_{\gamma}>E_{0}$ in the $\bar{B}$-meson rest frame can be easily estimated when $X_{\text {no charm }}^{(1)}$ is assumed to be massless and the spin of $\psi$ is assumed to be irrelevant. For $E_{0}>\frac{m_{\psi}^{2}}{2 m_{B}} \simeq 0.91 \mathrm{GeV}$ one finds:

$$
\begin{aligned}
& \left\{\mathbf{B R}\left[\overline{\mathbf{B}} \rightarrow \mathbf{X}_{\mathrm{no} \text { charm }}^{(1)} \psi\right] \times \mathbf{B R}\left[\psi \rightarrow \mathbf{X}_{\mathrm{no} \text { charm }}^{(2)} \gamma\right]\right\}_{E_{\gamma}>E_{0}} \\
& =\mathbf{B R}\left[\overline{\mathbf{B}} \rightarrow \mathbf{X}_{\mathrm{no} \text { charm }}^{(1)} \psi\right] \int_{2 E_{0} / m_{B}}^{1} d x b(x) f(x)
\end{aligned}
$$

where $x=\frac{2 E_{\gamma}^{\prime}}{m_{\psi}}, \quad b(x)=\frac{\partial}{\partial x} B R\left[\psi \rightarrow X_{\text {no charm }}^{(2)} \gamma\right]$ and
$f(x)=\frac{1}{2}-\frac{1}{\pi} \arcsin \left[\frac{m_{B}^{2}}{m_{B}^{2}-m_{\psi}^{2}}\left(\frac{4 E_{0}}{x m_{B}}-\frac{m_{B}^{2}+m_{\psi}^{2}}{m_{B}^{2}}\right)\right]$.

The function $b(x)$ for $x>0.6$ can be found from the ancient MARK II data [Phys. Rev. D23 (1981) 43]. A naive fit to their fig. 9 reads:

$$
b(x)=(4.1 \pm 0.8) \times 10^{-2} n(x)
$$

where

$$
n(x)=C \begin{cases}0.2, & \text { for } 0.6<x<0.7 \\ \frac{20}{9}(1-x)^{2}, & \text { for } 0.7<x<1\end{cases}
$$

and the normalization constant $C$ is fixed by the requirement

$$
\int_{0.6}^{1} d x n(x)=1
$$

Knowing $b(x)$ for $x>0.6$, one can calculate

$$
\begin{aligned}
r\left(E_{0}\right) & =\frac{1}{3.15 \times 10^{-4}} \times \\
& \times\left\{B R\left[\bar{B} \rightarrow X_{\text {no charm }}^{(1)} \psi\right] \times B R\left[\psi \rightarrow X_{\text {no charm }}^{(2)} \gamma\right]\right\}_{E_{\gamma}>E_{0}}
\end{aligned}
$$

for $E_{0}>0.3 m_{B} \simeq 1.6 \mathrm{GeV}$. The result is as follows:


The $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum:

$\begin{array}{cl}--- & \text { with } \bar{B} \rightarrow X_{\text {s }} \psi \\ -- & \text { without } \\ \text { followed by } \psi \rightarrow X^{\prime} \gamma \text {. }\end{array}$
Present CLEO cut is $E_{\gamma}>2.1 \mathrm{GeV} . \Rightarrow$ Strong sensitivity to unknown $\bar{B}$-meson shape function.

Lowering the cut to $\sim \mathbf{1 . 6} \mathrm{GeV}$ would practically remove the sensitivity to the shape function. However, a careful subtraction of the intermediate $\psi$ contribution would become necessary.

## Examples of Feynman diagrams contributing to $b \rightarrow s \gamma$ at various orders in the renormalization-group-improved perturbation theory:


[T. Inami and C.S. Lim, Prog. Theor. Phys. 65 (1981) 297],
[M. Ciuchini et al., Phys. Lett. B316 (1993) 127, Nucl. Phys. B421 (1994) 41], [S. Bertolini, F. Borzumati and A. Masiero, Phys. Rev. Lett. 59 (1987) 180 ], [N.G. Deshpande et al., Phys. Rev. Lett. 59 (1987) 183 ],
[B. Grinstein, R. Springer and M.B. Wise, Nucl. Phys. B339 (1990) 269],
[M.M., Phys. Lett. B269 (1991) 161, Nucl. Phys. B393 (1993) 23],
[C. Greub, T. Hurth and D. Wyler, Phys. Rev. D54 (1996) 3350],
[A. Ali and C. Greub, Z.Phys.C49 (1991) 431, Phys. Lett. B361 (1995) 146],
[N. Pott, Phys. Rev. D54 (1996) 938],
[P. Cho and B. Grinstein, Nucl. Phys. B365 (1991) 279],
[K. Adel and Y.P. Yao, Phys. Rev. D49 (1994) 4945],
[C. Greub and T. Hurth, Phys. Rev. D56 (1997) 2934],
[A.J. Buras, A. Kwiatkowski and N. Pott, Nucl. Phys. B517 (1998) 353],
[K. Chetyrkin, M.M. and M. Münz, Phys. Lett. B400 (1997) 206],
[M.M. and M. Münz, Phys. Lett. B344 (1995) 308].

## The effective Lagrangian:

$\mathcal{L}=\mathcal{L}_{Q C D \times Q E D}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) O_{i}$
$O_{i}=\left\{\begin{array}{lll}\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), & i=1,2, & \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\ \left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), & i=3,4,5,6, & \left|C_{i}\left(m_{b}\right)\right|<0.07 \\ \frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, & i=7, & C_{7}\left(m_{b}\right) \sim-0.3 \\ \frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, & i=8, & C_{8}\left(m_{b}\right) \sim-0.15\end{array}\right.$

## Perturbative expansion of the Wilson coefficients:

$$
\left.\begin{array}{rl}
C_{i}(\mu)=C_{i}^{(0)}(\mu) & +\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1)}(\mu) \\
& +\frac{\alpha_{e m}}{\alpha_{s}(\mu)} C_{i}^{e m(0)}(\mu)
\end{array}\right) \frac{\alpha_{e m}}{4 \pi \sin ^{2} \theta_{W}} C_{i}^{e w(1)}(\mu)+\ldots .
$$

[K. Baranowski and M.M., Phys. Lett. B483 (2000) 410].
[A. Kagan and M. Neubert, Eur. Phys. J. C7 (1999) 5],
[P. Gambino and U. Haisch, CERN-TH-2000/211],
[A. Czarnecki and W. Marciano, Phys. Rev. Lett. 81 (1998) 277],
[A. Strumia, Nucl. Phys. B532 (1998) 28].

Once the Wilson coefficient are known, we need to find the $\bar{B} \rightarrow X_{s} \gamma$ amplitude, i.e. the matrix elements of the effective Hamiltonian. This can be done with help of OPE and HQET. We need to calculate:

$$
\left.\Sigma_{X_{s}}\left|C_{7}\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}
$$

The " 77 " interference term can be related via optical theorem to the imaginary part of the elastic forward scattering amplitude:


In this amplitude, we can perform OPE when the photons are soft enough, i.e. when $\left|m_{B}-2 E_{\gamma}\right| \gg \Lambda_{Q C D}$.

[J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B247 (1990) 399],
[A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D49 (1994) 3367].

## We have a double expansion:

$$
\begin{array}{r}
\Sigma_{X_{S}} B R\left[\bar{B} \rightarrow X_{s} \gamma\right]_{E_{\gamma}>1 \mathrm{GeV}}=\left[a_{00}+a_{02}\left(\frac{\Lambda}{m_{B}}\right)^{2}+\ldots\right] \\
+\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\left[a_{10}+a_{12}\left(\frac{\Lambda}{m_{B}}\right)^{2}+\ldots\right]+\mathcal{O}\left[\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2}\right]
\end{array}
$$

+ [ Contributions other than the " 77 " interference term].
There is no OPE for the latter term. However, operators containing no charm quark are suppressed by their small Wilson coefficients. As far as the operators containing the charm quark are concerned, we know that their contribution at the leading order in $\alpha_{s}$ can be expressed as a power series:

which can be truncated to the leading $n=0$ term, because the coefficients $b_{n}$ decrease fast with $n$. The calculable $n=0$ term makes $B R\left[\bar{B} \rightarrow X_{s} \gamma\right]$ increase by around $\mathbf{3 \%}$. However, an analysis of nonperturbative effects in the matrix elements of $O_{1}$ and $O_{2}$ at $\mathcal{O}\left(\alpha_{s}\right)$ is missing. For instance:

where $A_{1 \text {-loop }}$ stands for the very small ( $<1 \%$ in BR) one-loop perturbative contribution, $B_{\psi}$ is a part of the intermediate $\psi$ contribution, and $C_{\text {? }}$ denotes the remaining non-perturbative terms. $C_{\text {? }}$ would not be numerically important if it was either suppressed by $\Lambda / m_{c, b}$, or small for other reasons, or could be absorbed into the intermediate $\psi$ contribution. Is any of those three possibilities realized?

Neglecting all the non-perturbative effects that arise at order $\mathcal{O}\left(\alpha_{s}\left(m_{b}\right)\right)$, we can write:

$$
\begin{aligned}
& \frac{\Gamma\left[\bar{B} \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{\text {cut }}}^{\text {subtracted } \psi}}{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right]} \simeq \frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{\text {cut }}^{\text {perturbative NLO }}}^{\Gamma\left[b \rightarrow X_{c} e \bar{\nu}_{e}\right]^{\text {perturbative NLO }}} \times}{\quad \times\left[1+\left(\mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right) \simeq 1 \%\right)+\left(\mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right) \simeq 3 \%\right)\right]} .
\end{aligned}
$$

For $E_{\text {cut }}=1 \mathrm{GeV}$, one obtains:
$B R\left[\bar{B} \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{\text {cut }}}^{\text {subtracted } \psi}=(3.29 \pm 0.33) \times 10^{-4}$.
The dominant errors originate from $\mathcal{O}\left(\alpha_{s}^{2}\right)$ effects, and from $m_{c} / m_{b}$ in the semileptonic decay (around $7 \%$ each).
$E_{\text {cut }}=1 \mathrm{GeV}$ is not accessible experimentally. We need the photon spectrum.

Electroweak transitions mediating $\bar{B} \rightarrow X_{s} l^{+} l^{-}$:


In the effective Lagrangian, two operators need to be included, in addition to those already present in the $\bar{B} \rightarrow X_{s} \gamma$ analysis:

$$
\begin{aligned}
O_{9} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b\right)\left(\bar{l} \gamma^{\mu} l\right) \\
O_{10} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right)
\end{aligned}
$$

Their Wilson coefficients are relatively large:

$$
\begin{aligned}
C_{9}\left(m_{b}\right) & \simeq+4.1 \\
C_{10}\left(m_{b}\right) & \simeq-4.2
\end{aligned}
$$

Dilepton mass spectrum in $\bar{B} \rightarrow X_{s} l^{+} l^{-}$.

— with inclusion of non-perturbative $c \bar{c}$ in the factorization approximation.

## Region $\hat{s} \in[0.05,0.25]$ :

(i) Quite clean theoretically. However, the effect of $\bar{B} \rightarrow \psi X^{(1)}$ followed by $\psi \rightarrow X^{(2)} l^{+} l^{-}$should be studied.
(ii) Sensitive to new physics in a different way than $\bar{B} \rightarrow X_{s} \gamma$. For instance, when the coefficient $C_{7}^{e f f}\left(m_{b}\right)$ changes sign, the integrated BR in this region changes from $1.5 \times 10^{-6}$ to $3 \times 10^{-6}$. Thus, its sensitivity to the sign of $C_{7}^{e f f}$ is the same as that of leptonic forward-backward or energy asymmetries.

Perturbative expansion of $C_{9}$ and $C_{10}$ :

$$
\begin{aligned}
& C_{9}(\mu)=\frac{4 \pi}{\alpha_{s}(\mu)} C_{9}^{(-1)}(\mu)+C_{9}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{9}^{(1)}(\mu)+\ldots \\
& C_{10}= \\
& C_{10}^{(0)}+\frac{\alpha_{s}\left(M_{W}\right)}{4 \pi} C_{10}^{(1)}+\ldots
\end{aligned}
$$

After a formal expansion in $\alpha_{s}$, the term $C_{9}^{(-1)}(\mu)$ reproduces (the dominant part of) the electroweak logarithm originating from photonic penguins with charm quark loops:

$$
\frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right)=\frac{4}{9} \ln \frac{M_{W}^{2}}{m_{b}^{2}}+\mathcal{O}\left(\alpha_{s}\right)
$$

Numerically $C_{9}^{(-1)}\left(m_{b}\right) \simeq 0.033 \ll 1 \quad \Rightarrow \quad \frac{4 \pi}{\alpha_{s}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right) \simeq 2$.
On the other hand, $C_{9}^{(0)}\left(m_{b}\right) \simeq 2.2$. Consequently, the accuracy of $\sim 10 \%$ in the Wilson coefficients can be achieved only after including the formally NNLO $\mathcal{O}\left(\alpha_{s}\right)$ terms $\Rightarrow$ 2-loop matching and 3-loop RGE evolution, as in $\bar{B} \rightarrow X_{s} \gamma$.

## Present status:

$C_{9}^{(-1)}\left(m_{b}\right)$ and $C_{10}^{(0)}$ are known.
[B. Grinstein, M Savage and M.B. Wise, Nucl. Phys. B319 (1989) 271]
$C_{9}^{(0)}\left(m_{b}\right)$ is known.
[M.M, Nucl. Phys. B393 (1993) 23, B439 (1995) 461 (E)]
[A.J. Buras and M. Münz, Phys. Rev. D52 (1995) 186]
$C_{10}^{(1)}$ is known.
[G. Buchalla amd A.J. Buras, Nucl. Phys. B398 (1993) 285, B400 (1993) 225]
[M.M., J. Urban, Phys. Lett. B451 (1999) 161]
$C_{9}^{(1)}\left(m_{b}\right)$ is known up to (small) 3-loop RGE effects.
[C. Bobeth, M.M. and J. Urban, Nucl. Phys. B574 (2000) 291]
Unfortunately, 2-loop matrix elements of the 4-quark operators are not known...

Unfortunately, 2-loop matrix elements of the 4-quark operators are not known...


The $b \rightarrow s \gamma$ calculation of Greub, Hurth and Wyler has to be generalized to off-shell photons.

## Present prediction:

$$
\begin{aligned}
& B R\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]_{\hat{s} \in[0.05, ~ 0.25]} \\
&=\underset{\quad[(1.42 \pm 0.19)-0.02}{\text { perturbative }}+\underset{\Lambda^{2} / m_{c}^{2}}{0.06]} \times 10^{2} / m_{\bar{\partial}}^{-6} \\
&=(1.46 \pm 0.19) \times 10^{-6},
\end{aligned}
$$

where only the perturbative uncertainty from $\mu_{b}$-dependence has been taken into account.

## HQET corrections:

$\Lambda^{2} / m_{c}^{2}$ :
[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594], [J.-W. Chen, G. Rupak and M.J. Savage, Phys. Lett. B410 (1997) 285], $\Lambda^{2} / m_{b}^{2}$ :
[A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D49 (1994) 3367],
[G. Buchalla and G. Isidori, Nucl. Phys. B525 (1998) 333].
In those calculations, the quantity $C_{9}^{e f f}$ was treated as a Wilson coefficient of a local operator, which it is not (contrary to $C_{7}^{\text {eff }}$ that is relevant for $B \rightarrow X_{s} \gamma$ ). An estimate of the accuracy of such an approximation is necessary.

Dilepton mass spectrum in $b \rightarrow X_{s} l^{+} l^{-}$ for $\hat{s}=\left(m_{l^{+} l^{-}} / m_{b}\right)^{2} \in[0.05,0.25]$.

$$
R_{q u a r k}^{l^{+l^{-}}}(\hat{s})=\frac{1}{\Gamma\left[b \rightarrow X_{c} e \bar{\nu}_{e}\right]} \frac{d}{d \hat{s}} \Gamma\left(b \rightarrow X_{s} l^{+} l^{-}\right) .
$$



Reduction of $\mu_{0}$-dependence of $R_{\text {quark }}^{l^{+} l^{-}(\hat{s})}$


Remaining $\mu_{b}$-dependence of $R_{\text {quark }}^{l^{+} l^{-}}(\hat{s})$
[C. Bobeth, M.M. and J. Urban, Nucl. Phys. B574 (2000) 291]

## Conclusions:

## 1. $\bar{B} \rightarrow X_{s} \gamma$

(i) Since the completion of NLO QCD calculation 4 years ago, many new calculations have been made. They include evaluation of non-perturbative $\Lambda^{2} / m_{c}^{2}$ corrections and the leading electroweak corrections. None of these results exceeds half of the overall $\sim 10 \%$ uncertainty. They tend to cancel among each other. Therefore, the prediction for $B R\left[\bar{B} \rightarrow X_{s} \gamma\right]$ remains almost the same: $(3.29 \pm 0.33) \times 10^{-4}$.
(ii) This prediction agrees very well with the measurements of CLEO and ALEPH, whose combined result is $(3.14 \pm 0.48) \times 10^{-4}$.
(iii) Future measurements of $\bar{B} \rightarrow X_{s} \gamma$ should rely as little as possible on theoretical predictions for the precise shape of the photon spectrum above $E_{\gamma} \sim 2 \mathrm{GeV}$. On the other hand, the intermediate $\psi$ background should be carefully subtracted for $E_{\gamma}$ below $\sim 2 \mathrm{GeV}$.
(iv) A systematic analysis of non-perturbative effects at order $\mathcal{O}\left(\alpha_{s}\right)$ is missing. Most probably, they do not exceed the overall $\sim 10 \%$ uncertainty when the energy cutoff is between 1 and 2 GeV , and when the intermediate $\psi^{\left({ }^{( }\right)}$contribution is subtracted.
2. $\bar{B} \rightarrow X_{s} l^{+} l^{-}$
(i) A calculation of $\mathcal{O}\left(\alpha_{s}\right)$ terms in all the Wilson coefficients has been recently completed (up to small effects originating from 3-loop RGE evolution of $C_{9}$ ). However, the perturbative uncertainty remains close to $\sim 13 \%$, because the 2 -loop matrix elements of the 4-quark operators are unknown.
(ii) Good control over non-perturbative effects can be achieved in the region of low dilepton invariant mass ( $\hat{s} \in[0.05,0.25])$. The present prediction for the branching ratio integrated over this region is $(1.46 \pm 0.19) \times 10^{-6}$. However, a careful analysis of non-perturbative effects from intermediate $c \bar{c}$ states (including $\psi$ ) is necessary.

