Z penguins & rare B decays

Gino Isidori (INFN -LNF)

Work done in collaboration with G. Buchalla & G. Hiller [hep-ph/0006136]

- Introduction
- FCNC Z penguins & low-energy SUSY
- Experimental bounds on the Zbs vertex
- The lepton forward–backward asymmetry in $B \to K^*1^{+}1^{-}$
- Conclusions

Introduction

Flavour Changing Neutral Currents provide a powerful tool to search for physics beyond the Standard Model:

- No tree-level contributions within the SM
- Possible non-decoupling effects (= sizable deviations from the SM expectations even for $M_X \gg M_W$)

Basic types of FCNC amplitudes relevant to $b \to s1^+1^-(v\bar{v})$:

A) Dim.-6 operators $(b\Gamma s)(\Gamma \Gamma 1)$

$$(\overline{b}\Gamma s)(\overline{\Gamma}\Gamma 1)$$

$$SM \Rightarrow \sim \frac{V_{is}^* V_{ib}}{M_W^2} (\overline{b}_L \gamma_\mu s_L) (\overline{\Gamma}_L \gamma^\mu 1_L)$$

$$\frac{New}{Physics} \sim \delta_{bs}^X / M_X^2$$

Stong link (⇒ constraints) from $\Delta B=2$ processes in most scenarios (i.e. when generated by box diagrams)

fast decoupling

B) Magnetic operators

$$(\bar{b}\sigma_{\mu\nu}s)F^{\mu\nu}$$

Stong direct constraints from $b \rightarrow s \gamma$ in any model

$$\mathbf{SM} \implies \sim \frac{y_{b} V_{ts}^{*} V_{tb}}{M_{w}} (b_{R} \sigma_{\mu\nu} s_{L}) F^{\mu\nu}$$

$$(y_a = m_a/M_w)$$
 $\sim \lambda_{bs}^X/M_X$ potential slow decoupling

C) FCNC Z couplings $(b\gamma_{\mu}s)Z^{\mu}$

$$(\overline{b}\,\gamma_{\mu}\,s)\,Z^{\mu}$$

Not very constrained by exp. data at present!

$$SM \implies \sim (y_t^2 V_{ts}^* V_{tb}) (\overline{b}_L \gamma_\mu s_L) Z^\mu$$

potential non-decoupling! (related to $SU(2)_L$ breaking)

FCNC Z penguins & low-energy SUSY

Model with minimal particle content & generic flavour structure

Potentially dominant effect provided by chargino-stop loops (large $SU(2)_L$ breaking in the up sector)

2nd order in the mass expansion

Colangelo, Isidori, '98

$$(\delta_{LR}^U)_{23} = \frac{(\tilde{M}_U^2)_{s_L t_R}}{\langle \tilde{M}_U^2 \rangle}$$
 new source of flavor mixing

mixing

$$\left| \frac{A_{SUSY}^{Z}}{A_{SM}^{Z}} \right| \sim \left(\frac{500 \text{ GeV}}{\tilde{M}_{\chi}} \right) \left| \left(\delta_{LR}^{U} \right)_{23} \right|$$

Lunghi et al. '99

The indirect bounds on $(\delta_{LR}^U)_{23}$ are not very stringent Best limit from $b \rightarrow s\gamma$: $\left| (\delta_{LR}^U)_{23} \right| < 3 \times \left(\frac{500 \text{ GeV}}{\tilde{M}_U} \right)^{22}$

Misiak, Pokorski, Rosiek '99

O(1) deviations from SM expectations in the Zbs vertex are possible!

4

Experimental bounds on the Zbs vertex

General parameterization:

$$\mathcal{L}_{FC}^{Z} = \frac{G_F e^2}{\sqrt{2} \pi^2} M_Z^2 \frac{\cos \theta_W}{\sin \theta_W} Z^{\mu} \left(Z_{bs}^{L} \overline{s}_L \gamma_{\mu} b_L + Z_{bs}^{R} \overline{s}_R \gamma_{\mu} b_R \right)$$

$$(Z_{bs}^L)^{(SM)} = V_{ts}^* V_{tb} C_0(x_t) \sim 0.03$$

exclusive measurements

- elear exp. signature
- sizable th. error related to hadronic form factors

¥

inclusive measurements

- th. clean
- → weak exp. bounds

most stringent bound at present:

$$B(B \to K^* \mu^+ \mu^-)^{(N.R.)} < 4.0 \times 10^{-6} \implies |Z_{bs}^{L.R}| < 0.13$$

$$[CDF '99]$$

$$B(B \to K^* \mu^+ \mu^-)_{SM}^{(N.R.)} = (1.9^{+0.5}_{-0.3}) \times 10^{-6}$$

Z penguins and rare B decays

12	decay mode	BR_{SM}	BR _{max}	BR _{exp}	
_	$B \rightarrow K^* VV$	$\approx 1.3 \times 10^{-5}$	≤ 10 ⁻⁴	< 7.7×10 ⁻⁴	LEP
-	$B \rightarrow K \nu \nu$	$\approx 4 \times 10^{-6}$	$\lesssim 3 \times 10^{-5}$	< 7.7×10 ⁻⁴	LEP
	$B \rightarrow K \mu^+ \mu^-$	$\approx 6 \times 10^{-7}$	$\leq 2 \times 10^{-6}$	< 5.2×10 ⁻⁶	CDF
-	$B_s \rightarrow \mu^+ \mu^-$	≈ 3×10 ⁻⁹	≤ 3×10 ⁻⁸	< 2.6×10 ⁻⁶	CDF

Enhancements up to ~ 10 possible in the modes where the single-photon exchange amplitude is forbidden

5

• The lepton FB asymmetry in $B \to K^*1^{-1}$

An excellent probe of non-standard effects in Z_{bs}^{L} , including a possible CP phase, is provided by the forward-back asymmetry of the emitted leptons in $B \to K^*1^{+1}$:

$$A_{FB}^{(B)}(s) = \frac{1}{d\Gamma(B \to K^*\mu^+\mu^-)/ds} \int d\cos\theta \frac{d^2\Gamma(B \to K^*\mu^+\mu^-)}{ds\,d\cos\theta} sgn(\cos\theta)$$

9 = angle between μ^+ & **B** momenta in the dilepton c.o.m. frame $s = (p_{\mu^+} + p_{\mu^-})^2/m_B^2$

$$A_{FB}^{(B)}(s) \neq 0$$

interference between Vector and Axialvector couplings to the lepton pair

$$\begin{array}{c} Q_{\gamma} \sim (\overline{s}_{L} \sigma_{\mu \nu} b_{L}) F^{\mu \nu} \\ Q_{9} \sim (\overline{s}_{L} \gamma^{\mu} b_{L}) (\overline{1} \gamma_{\mu} 1) \end{array} \right]$$
 Vector coupling (~ insensitive to Z_{bs}^{L})

 $Q_{10} \sim (\bar{x}_L \gamma^{\mu} b_L) (\bar{1} \gamma_{\mu} \gamma_5 1)$ Axial coupling (strongly sensitive to Z_{bs}^L)

$$A_{FB}^{(B)}(s) \propto \Re \left[C_{10}^* \left(s C_9^{eff}(s) + r(s) C_7 \right) \right]$$
absorptive (CP-cons.) phase due to intermediate $c\bar{c}$ states (beyond the SM)

Direct access to the relative phases of the Wilson Coefficients

G. Isidori

 $A_{FB}(s)$ within the SM for the $\overline{B} = |b\overline{d}\rangle$ mode

Properties of $A_{FB}(s)$ independent from the detailed structure of the hadronic form factors:

•
$$A_{FB}(s_0) = 0$$
 for $s_0 \simeq C_7/C_9$
(unaffected by new physics in Z_{bs})

Burdman '98

• •
$$A_{FB}^{(\overline{B})}(s) < 0$$
 for $s < s_0$ within the SM

► •
$$A_{FB}^{(B)}(s) = -A_{FB}^{(B)}(s)$$
 in absence of \mathbb{CP}

Buchalla, Hiller & G.I. '00

clear tests of possible new physics effect in Z_{bs}

N.B.: several wrong statements in the literature about the sign of $A_{FR}(s)$!

Conclusions

The generic New Physics scenario where the largest deviations from the SM, in the sector of FCNC $b \rightarrow s$ transitions, occurs via Z-boson exchange is

- theoretically well motivated
- phenomenologically allowed

Possible clear signatures of this scenario already observable within exclusive rare $B \to (K^*, K) + (1^+1^-, vv)$ decays:

- enhanced BR's
- sign and \mathbb{CP} effects in the lepton FB asymmetry of $B \to K^* \mu^+ \mu^-$