Production, spectroscopy and decays of

orbitally excited B mesons at LEP

Presented by Pauline Gagnon

Indiana University - OPAL collaboration

Outline

- Motivation for $B_{\rm J}^*$ studies (aka B^{**})
- Exclusive sample selection from Aleph
- Inclusive sample selection from L3 and OPAL
- Model-independent ${\rm BR}({\rm B}_{\rm J}^*
 ightarrow {\rm B}^*\pi(X))$ from OPAL
- Mass fits from ALEPH, L3 and OPAL
- Conclusions

For more details, see:

ALEPH: Phys. Lett. B 425, 1-2 (1998) 215

L3 : Phys. Lett. B 465, 1-4 (1999) 323

OPAL : To be sub. to EPJC. See http://opal.web.cern.ch/Opal/pubs/pr/

Theoretical background

 $\bullet\,$ Heavy Quark Symmetry predicts four B_J^* states

 $J^P=0^+,\;1^+,\;1^+,\;2^+$

- Parity and angular momentum impose $B_J^* \to B^* \pi$ or $B \pi$
- $\bullet~\mbox{All}~B_J^*$ states are expected to overlap in mass
- $B_J^* \to B^{(*)} \pi \pi$ is phase-space suppressed

Purpose of these analyses

First observation reported by OPAL in $1994 \,$

	OPAL (94)	DELPHI (94)	ALEPH (95)
$b \to \mathrm{B}^*_\mathrm{J}$	$> 0.27 \pm 0.06$	0.26 ± 0.16	0.28 ± 0.07
$M_{\mathrm{B}_{\mathrm{J}}^{*}}$	5600 - 5850	5734 ± 18	5703 ± 11

• Measure the production fraction

$$\hookrightarrow \frac{\mathrm{BR}(b \to \mathrm{B}_{\mathrm{J}}^*)}{\mathrm{BR}(b \to \mathrm{B}_{\mathrm{u,d}})}$$

 $\bullet \ \mbox{Unknown} \ B_J^*$ composition

 $\hookrightarrow \text{separate } B^*_J \to B^*\pi \text{ from } B^*_J \to B\pi$

• Masses and widths still largely unmeasured

 \hookrightarrow measure M and Γ for dominant states

• Exclusive samples can be used to tag the B meson flavour

 \hookrightarrow important for B oscillations studies

General technique for $B_{\mathbf{J}}^{*}$ reconstruction

• Separate event in two using thrust axis

$$\hookrightarrow e^+e^- \to \mathbf{Z}^0 \to \mathbf{b}\overline{\mathbf{b}}$$

- Apply a b-tag to enhance b content
- Reconstruct B mesons from tracks belonging to a secondary vertex or via exclusive modes
- Associate \boldsymbol{B} meson with a pion coming from primary vertex
- $\bullet\,$ Try to disentangle the underlying four B_{J}^{*} states

Aleph: exclusive B meson sample

Exclusive sample of 404 fully reconstructed B mesons

 \hookrightarrow 80% from $B \to D^*X$, $X = \pi^{\pm}, \rho^{\pm}, a_1^{\pm}$ $D^* \to D^0 \gamma \text{ or } D^0 \pi^0 \Rightarrow \text{ satellite peak}$ \hookrightarrow 20% from $B \to J/\psi(\psi')X$, $X = K^{\pm}, K^*$

- Associate a pion with these B mesons to form ${
 m B}_{
 m J}^*$
 - \hookrightarrow Charge-correlations: right/wrong-sign samples
 - \hookrightarrow Background normalisation from wrong-sign sample

ALEPH B^*_J signal: 41 ± 6 events

$\mathrm{B}^*_{\mathrm{J}}$ reconstruction from inclusive B mesons

- Use an inclusive sample of partially reconstructed B mesons
- Associate a pion with these B mesons to form $B_{\rm J}^{*}$
- Background normalisation from ${
 m B}\pi$ mass dist. side-band

L3 result

 ${
m B}_{
m J}^*$ signal: 2784 ± 274 events

 $rac{\mathrm{BR}(b
ightarrow\mathrm{B}_{\mathrm{J}}^{*})}{\mathrm{BR}(b
ightarrow\mathrm{B}_{\mathrm{u,d}})} = (32\pm3\pm6~\mathrm{(syst)})\%$

Background shape taken from Monte Carlo

Separating $B_{J}^{*} \rightarrow B^{*}\pi$ from $B\pi$ at OPAL

No attempt to reconstruct $B^*_J o B^* \pi o B \pi \gamma$

- Form inclusive $\mathrm{B}^*_{\mathrm{J}}$ sample from $\mathrm{B}\pi$ combinations
- Assign a probability \mathcal{W}_{B^*} that B came from $B^* \to B\gamma$
 - \hookrightarrow look for $B^* \to B\gamma$ by searching for γ in the hemis.

 \hookrightarrow form B^* enriched and depleted samples with \mathcal{W}_{B^*}

• #'s of B_J^* in each sample yield $BR(B_J^* \to B^*\pi(X))$

(Middle) background subtracted (Bottom) efficiency corrected ${
m BR}({
m B}_{
m J}^* o {
m B}^* \pi(X)) = 0.85 \pm 0.27 \, \pm 0.12 \, {
m (syst)}$

Mass fits

	ALEPH	L3	OPAL
# events	41 ± 6	2770 ± 394	20840 ± 388
$\sigma(M_{\mathbf{B}\pi})$	$2-5 \rm MeV$	$45~{ m MeV}$	$40~{ m MeV}$

Fit parameters : free in red or purple (less robust) All in MeV \pm total errors. Fixed assumptions in black.

Assumptions for B^{\ast}_{J} states production fractions not shown

	ALEPH	L3	OPAL
$\Delta(M)_{ m narrow}$	12	12	20
$\Delta(M)_{ m broad}$	12	12	12
$\Gamma_{ m narrow}$	$21,\ 25$	24 ± 31	18 ± 30
$\Gamma_{\rm broad}$	150	70 ± 33	129 ± 68
$M_{ m narrow}$	5727^{+10}_{-12}	5756 ± 8	5738 ± 8
$M_{\rm broad}$	$M_{\rm narrow} - 100$	5658 ± 16	5839 ± 40
$b \to \mathrm{B}^*_\mathrm{J}$	0.31 ± 0.11	0.32 ± 0.06	-
$B^*_J \to B^*\pi$	-	-	0.74 ± 0.21
$B_J^* \to B^* \pi \pi$	-	-	0.33 ± 0.15
$M_{\mathbf{B}'}$	-	5937 ± 21	none
$\sigma(M_{\mathbf{B}^{'}})$	-	50 ± 22	-
$b \rightarrow \mathbf{B}'$	-	0.034 ± 0.014	-

Mass fit results from Aleph, L3 and OPAL

(Some) agreement between OPAL and ALEPH:

- 1) Both see a broad peak below a narrow peak
- 2) ALEPH assumed $M_{\rm broad} = M_{\rm narrow} 100$ for the fit
- 3) OPAL fit assigned this peak to ${
 m B}^{(*)}\pi\pi$ with one missing π

A few disagreements:

- 1) $M_{
 m narrow}$ $M_{
 m broad}$ (OPAL versus ALEPH, L3)
- 2) Evidence for $B^{'}\,$ from L3 not observed by OPAL
- 3) $M_{
 m narrow}$: (OPAL, ALEPH versus L3)

Core issue: fit robustness

Fit stability needs clear understanding of bgnd and efficiencies

- L3 uses same MC simulation as OPAL
 - \hookrightarrow OPAL saw that efficiency depends on $M({
 m B}\pi)$
 - \hookrightarrow only OPAL corrects shape of $M_{B\pi}$ distribution
- OPAL and ALEPH check background shape with data

 \hookrightarrow shape taken from MC for L3

- BR(B_J^{*} \rightarrow B^{*} $\pi(X)$) = 0.85 ± 0.27 ± 0.12 (syst)
 - $\hookrightarrow \text{first measurement, model-independent result}$
- Evidence for ${
 m B}^{(*)}\pi\pi$ by OPAL needs cross-check