#### Measurements of e- $\gamma$ interactions at LEP

For the LEP collaborations

Carmen Palomares

CIEMAT (Madrid, Spain)

XXXth International Conference on High Energy Physics

July 27 - August 2, 2000, Osaka, Japan



#### **OUTLINE**

- Quasi-real Compton scattering
- $\bullet$   $e^{\pm}\gamma \rightarrow e^{\pm}\gamma$ : L3 analysis
- $\bullet$   $e^{\pm}\gamma \rightarrow e^{\pm}\gamma^{*}/Z$ : OPAL and DELPHI analyses
- Single excited electrons
- Conclusions



#### Quasi-real Compton scattering



- Bremsstrahlung:

$$q^2$$
,  $p^2 \rightarrow 0$ ,  $e^+$ ,  $e^-$  and  $\gamma$  undetected.

- Radiative Bhabha scattering:

$$q^2 \rightarrow 0$$
 ;  $|p^2| >> |q^2|.$ 

 $\mathrm{e^+}$ ,  $\mathrm{e^-}$  detected at finite angle,  $\gamma$  along beam direction.

- Quasi-real Compton scattering:  $(e^{\pm}\gamma \rightarrow e^{\pm}\gamma)$ 

$$p^2 \rightarrow 0$$
;  $|q^2| >> |p^2|$   
 $e^{\pm}$  and  $\gamma$  detected ( $p_T^{e\gamma} \approx 0$ )  
the other  $e^{\pm}$  scattered at zero degree.  
 $E_{vis} > E_{beam}$ 



## $e-\gamma$ interactions at LEP

Two processes have been studied:

\* 
$$e^{\pm}\gamma \rightarrow e^{\pm}\gamma$$
: L3

Aim: Measurement of  $\sigma(e\gamma \rightarrow e\gamma)$ .

\* 
$$e^{\pm} \gamma \rightarrow e^{\pm} Z/\gamma^{\star}$$
: OPAL, DELPHI

The real photon is replaced by a virtual one or a Z

LEP process 
$$e^+e^- \rightarrow e^+e^-f\bar{f}$$

Futher processes leading to eeff final state:

$$-e^+e^- \rightarrow ZZ \rightarrow e^+e^-f\bar{f}$$

$$-e^+e^- \rightarrow \gamma\gamma \rightarrow e^+e^-f\bar{f}$$

Two channels:  $Z/\gamma^* \to q\bar{q}$ ,  $\mu^+\mu^-$ 

Aim: Measurement of  $\sigma(e^{\pm}\gamma \rightarrow e^{\pm}Z/\gamma^{*})$ 

#### Signatures:

 $e^{\pm}$  escapes along the beam pipe. The other  $e^{\pm}$  is observed in the detector together with a  $\gamma$  or two fermions  $(\mathbb{Z}/\gamma^* \to f\bar{f})$ .



# $e^{\pm}\gamma \rightarrow e^{\pm}\gamma$ : L3 analysis

# Quasi-real Compton scattering is studied at 20 GeV $< \sqrt{s'} < 185$ GeV

Data from 1991-1999,  $\mathcal{L} = 634.6 \text{ pb}^{-1}$ ,  $\sqrt{s} \le 202 \text{ GeV}$ 

#### Standard Model predictions:

MC signal (
$$e^{\pm}\gamma \rightarrow e^{\pm}\gamma$$
): TEEGG  $\mathcal{O}(\alpha^4)$ 

Background: 
$$-e^+e^- \rightarrow \gamma\gamma(\gamma)$$
.  
 $-e^+e^- \rightarrow e^+e^-(\gamma)$ .

## Selection of the signal events

- \*  $\gamma$  and e $^{\pm}$  Identification: signal in electromagnetic calorimeter
- \* Polar acceptance for  $\gamma$ -e pair:  $|\cos \theta| < 0.94$  and  $|\cos \theta^*| < 0.80$ .
- \* To ensure the selection of quasi-real photons:  $p_{\rm T}^{\rm e\gamma}/{\rm E_{\rm beam}} < 0.15$



#### RESULTS

## $\sqrt{s'}$ – spectra



#### L3 preliminary

- Data
- MC γ e →γ e
- $MC e^+e^- \rightarrow e^+e^-(\gamma)$
- MC  $e^+e^- \rightarrow \gamma \gamma (\gamma)$







#### **RESULTS**

- ♦ 7335 quiasi-real Compton scattering events
- ♦ Small contribution of virtual photons:  $\langle P^2/s' \rangle \sim 10^{-3}$

#### **Cross Section**





## $e^{\pm}\gamma \rightarrow e^{\pm}Z/\gamma^*$ : OPAL and DELPHI analyses

Electroweak Compton scattering  $e^{\pm}\gamma \rightarrow e^{\pm}Z/\gamma^{*}$ 

Subprocess of the reaction  $e^+e^- \rightarrow e^+e^-Z/\gamma^*$ ;  $Z/\gamma^* \rightarrow f\bar{f}$ 

#### Signal definition:

OPAL: limits in Lorentz invariant variables

 $|\hat{\mathbf{t}}| > 400 \,\text{GeV}^2$   $\hat{\mathbf{t}} = (p' - p)^2$ 

 $|\mathbf{p}^2| < 10 \,\mathrm{GeV^2} \ \Rightarrow \sqrt{s'} \geq 20.6 \,\mathrm{GeV}$ 

 $M_{\rm ff} > 5 \, \text{GeV}$ 

**DELPHI**: topological limits

 $|\cos \theta_{\rm e}| < 0.985$ , E<sub>e</sub> > 4 GeV, M<sub>ff</sub> > 15 GeV

#### Standard Model predictions:

MC signal ( $e^+e^- \rightarrow e^+e^-Z/\gamma^*$ ): grc4f, PYTHIA.

#### Background:

- 4 fermions
- $-\gamma\gamma \rightarrow qqee$
- $q\bar{q}(\gamma)$
- 2 fermions

Data from 1997-1999, 183 GeV  $< \sqrt{s} < 202$  GeV

#### $e^{\pm}\gamma \rightarrow e^{\pm}Z/\gamma^*$ : OPAL, DELPHI analyses



$$e^{\pm}\gamma \to e^{\pm}Z/\gamma^* \to e^{\pm}q\bar{q}$$

#### Selection

\* Preselection:

e<sup>±</sup> Identification:

Signal in Electromagnetic calorimeter.

Multiplicity

2 jets (Durham algorithm):

OPAL:  $M_{ij} > 5 \text{ GeV}$ 

DELPHI:  $M_{ij} > 15 \text{ GeV}$ 

Kinematic fit: 2 jets + 1 e detec. + 1 e beam pipe (cut in  $\chi^2$ )

To ensure signal definition:

OPAL: 
$$\sqrt{s'} = M_{\gamma e} \ge 25 \text{ GeV}$$
 DELPHI:  $|\hat{\mathbf{t}}| > 500 \text{ GeV}|^2$   $|\cos \theta_e| < 0.985$   $(\hat{\mathbf{t}} \equiv 2 \text{ E}_{\text{beam}} \cdot \text{E}_e (1 + q_e \cdot \cos \theta_e))$ 

- \* Selection:
  - \* Cuts in missing momentum
  - \* Angular cuts

178

180

583

√s (GeV)

200

205

210

0.6

o(SM) m. < 60

 $\sigma(e^+e^- \rightarrow Z/\gamma)$ 

o(SM) m<sub>m</sub>> 60

09 > hb w-aal. Zee-m<sub>qq</sub>> 60



# $= 183 \, \text{GeV}$ :



| ±0.6 1.5±0.3±0.3 | 4.6±0.9 | Measured |
|------------------|---------|----------|
| ±0.6 1.5±0       | 16      | Measured |

 $\sqrt{s} = 189 \, \text{GeV}$ First observation



## **OPAL**

## Preliminary







#### **DELPHI Preliminary**

$$\sqrt{s} = 189 \text{ GeV}$$



\* and at least one of them to be a muon. \* Two tracks to be identified as leptons ( $\mu$  or e)

| 192-202 | 188.6 | 182.6 | $m_{\mu^{+}\mu^{-}} > 60 \text{ GeV}$ | 192-202 | 188.6   | 182.6 |                                        | $\sqrt{s}(\text{GeV})$ |  |
|---------|-------|-------|---------------------------------------|---------|---------|-------|----------------------------------------|------------------------|--|
| 3.8     | 2.4   | 0.8   |                                       | 2.5     | 1.6     | 0.5   | $15 < m_{\mu^+\mu^-} < 60 \text{ GeV}$ | Nexpected              |  |
| 4       | 5     | _     |                                       | 1       | 2       | 0     |                                        | $N_{\rm data}$         |  |
| 34+30   | 80+48 | j     |                                       | I       | 154+206 | l     |                                        | _σ (fb)                |  |
| 34      | 33    | 33    |                                       |         |         | 114   | 112                                    | 112                    |  |



#### Production of single excited electron (L3)

$$e\gamma \rightarrow e^* \rightarrow e\gamma$$

- \* The existence of e\* would enhance the number of observed  $\gamma$ e events.
- \* Since  $\sqrt{s'} (\equiv m_{e^*})$  -spectra are in agreement with the SM  $\Longrightarrow$  Upper limit for  $N_{e^*}$  from  $N_{ye}^{\text{obs}}$  and  $N_{ye}^{\text{exp,SM}}$ .

$$\psi \sigma(e\gamma \to e^* \to e\gamma) \propto \frac{\lambda^2}{m_{e^*}^2}$$

#### Upper limit coupling λ (e\*eγ) as a function of m<sub>o\*</sub>





#### CONCLUSIONS

- $\uparrow$   $\gamma$ -e events are identified as Compton scattering of quasi-real photons
  - Description > The cross-section of this process is measured in the energy range 20 GeV <  $\sqrt{s'}$  < 185 GeV and it is in good agreement with the QED expectations.
- - The cross-section of the process  $\gamma e \to eZ/\gamma^* \to eq\bar{q}$  has been calculated separately for Zee-like and  $\gamma^*$ ee-like events, with a cut at a hadronic mass of 60 GeV.
  - OPAL: The measured cross-section (√s = 189 GeV) is in agreement with the SM prediction in the Zee region, while in the γ\*ee region an excess with a significance of about 1.4 standard deviations is observed in the data.



- DELPHI: The measured cross-section (183 <  $\sqrt{s}$  < 202 GeV) is in agreement with the prediction in both invariant mass regions.
- ▷ The cross-section of the process  $\gamma e \rightarrow eZ/\gamma^* \rightarrow e\mu^+\mu^-$  has been measured as well.
- ➤ The results are not conclusive due to low statistics.
- An upper limit for a hypothetical coupling e\*eγ as a function of m<sub>e\*</sub> is derived from the measurement of Compton scattering.
  - $\triangleright \lambda$  of order of  $10^{-1}$ - $10^{-2}$  in the region 20 GeV <  $m_{e^*}$  < 200 GeV.