The Z⁰ Lineshape and

Lepton Asymmetries at LEP

Günter Duckeck Munich University (OPAL) on behalf of the LEP collaborations ALEPH, DELPHI, L3, OPAL

ICHEP 2000, 27.07.2000

- Introduction
- History & Status
- $\sigma/A_{\rm FB}$ Measurements & Fits
- Combination & Common Errors
- Results

Z⁰ Lineshape

Cross-sections for

 $e^+e^- \rightarrow q\overline{q}, \ e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^- \text{ at } E_{cm} = m_Z \pm 3 \, GeV$

Determine basic Z⁰ parameters:

mass $m_{\rm Z}$, width $\Gamma_{\rm Z}$ and pole-cross-sections $\sigma_{\rm f}^0$.

Lepton Asymmetries

LEP 1 History and Status

- 1989 Start of LEP, wide 11 pt energy scan, $\mathcal{L} = 1.3 \text{ pb}^{-1}$.
- 1990-92 1st phase, $\approx 5 \text{ M Z}^0$ decays, $\approx 1/3 \mathcal{L}$ off-peak.
- 1991 First precision calibration of E_{cm} with resonant depol.
- 1992/93 All four LEP expts. upgrade their luminometers $\Rightarrow (\delta \mathcal{L}/\mathcal{L})_{exp} < 1 \times 10^{-3}$
- 1993-95 2nd phase, $\approx 12 \text{ M Z}^0$ decays, $\approx 1/3 \mathcal{L}$ off-peak.
- End 1997 LEP energy calibration finalized
- 1995 Precision calculation workshop
 D. Bardin *et al.* YR-CERN-95-03
- 1998 Theoretical lumi error reduced B.F.L Ward *et al.* PLB 450 (1999) 262 to 0.6×10^{-3}
- 1999 Detailed ZFITTER/TOPAZ comparison
 D. Bardin *et al.* hep-ph/9902452
- 1999 $\mathcal{O}(\alpha^3)$ evaluation of ISR corrections , improved ISPP evaluation A. Arbuzov hep-ph/9907500
- ALEPH summer 99, CERN-EP/99-104, EPJ C14 (2000) 1.
- L3, DELPHI early 2000, CERN-EP/00-022, EP/00-037.
- OPAL almost finished, currently approved by collaboration, $\mathcal{O}(weeks)$.

Hadron cross-sections at LEP 1

Leakage currents
IP specific corrections
ective uncertainties:
$$\Delta r$$

certainties: $\Delta m_{Z} = 1.7 \text{ MeV } \Delta \Gamma_{Z} = 1.2 \text{ MeV}$ Effe

High precision after upgrades

Precisely calculable in QE

AIFPH

0.072%

0.09% 0.26%

• Large statistics

 $\sigma_{\sf had}$

 σ_e

 σ_{μ}

 \Rightarrow extrapolation to average physics

But special LEP configuration

Tidal deformations

0.18% 0.65% 0.42% 0.60% σ_{τ} 0.073% 0 033 % $\mathcal{L}_{\mathsf{exp}}$ 0.09% 0 064 %

Luminosity: Small-angle е

0.10%

0.31%

Selections: Clear signatures for e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\overline{q}$,

Lineshape Fits

Complete 1990-95 data set about ≈ 200 measured σ and $A_{\rm FB}$ per experiment.

Lineshape parameters determined in χ^2 fit using the latest versions of ZFITTER (6.23) and TOPAZ0 (4.4)

$$\chi^2 = \sum (\sigma_i^{\rm meas} - \sigma_i^{\rm fit}) \, C_{ij}^{-1} \, (\sigma_j^{\rm meas} - \sigma_j^{\rm fit})$$

The covariance matrix accounts for all uncertainties from statistic, selection, luminosity, *t*-channel correction and LEP E_{cm} :

$$C_{ij} = C_{ij}^{\text{stat}} + C_{ij}^{\text{syst}} + C_{ij}^{\text{lumi}} + C_{ij}^{\text{t-chan}} + C_{ij}^{E_{\text{cm}}}$$

Ideally, combined LEP results based on combined fit to all $4 \times 200 \sigma / A_{FB}$. However, too complex a task, approaches of the 4 expts in detail quite different.

Instead, average at the level of 9 pseudo-observables, the standard LEP 9 parameter set:

•
$$m_{Z}, \Gamma_{Z}, \sigma_{h}^{0}$$

• R_{e}, R_{μ}, R_{τ} $(R_{\ell} \equiv \frac{\Gamma_{had}}{\Gamma_{\ell\ell}})$
• $A_{FB}^{0,e}, A_{FB}^{0,\mu}, A_{FB}^{0,\tau}$

accounting for correlations and common errors.

Common Errors

'Easy' to estimate for theoretical errors, no dependence on datataking, similar for all expts:

Compare 2 fits switching on/off specific error source

 \Rightarrow quadratic difference of parameter-covariance matrix gives common error + correlations.

- Luminosity theory: Small-angle Bhabha cross-section calculated with BHLUMI 4.04, error estimate $\pm 0.061 \%$ B.F.L Ward *et al.*, PLB 450 (1999) 262 OPAL includes light-pair correction, error reduced to $\pm 0.054 \%$ G. Montagna *et al.*, NPB 547 (1999) 39 Corresponding common error on $\sigma_{\rm h}^0$
- *t*-channel: For large-angle Bhabha scattering corrections for *t* and *s*-*t* interference calculated with ALIBABA. Theoretical uncertainties evaluated comparing ALIBABA and TOPAZ0 W. Beenakker and G. Passarino, PL**B 425** (1998) 199

Specified in terms of $\sigma_{\rm F}$ and $\sigma_{\rm B}$, effects consistent for ADLO

	R_{e}	$A^{0,e}_{FB}$
R_{e}	0.024	-0.0054
$A^{0,e}_{FB}$		0.0014

• Fit programs:

Photonic corrections (ISR deconvolution) include leading $\mathcal{O}(\alpha^3)$ contributions. Comparing two different schemes and missing higher order corrections

S. Jadach et al., PLB 456 (1999) 77

 \Rightarrow only 0.1 MeV (m_Z , Γ_Z) and 0.01 % σ_h^0 .

Fermion-pair radiation recently calculated in $\mathcal{O}(\alpha^3)$ A. Arbuzov, hep-ph/9907500

Error reduced to $m_{\rm Z} \pm 0.3$ MeV, $\Gamma_{\rm Z} \pm 0.2$ MeV, $\sigma_{\rm h}^0 \pm 0.02$ % (Tampere '99: 0.5, 0.3, 0.02)

TOPAZ and ZFITTER SM and MI calculations compared in
detail inD. Bardin *et al.*, hep-ph/9902452Effective differences for fits small, only notable for $R_{\ell} \pm 0.004$

Overall effects small, $\leq 20 \%$ of total uncertainties

$m_{\sf Z}$	Γ_{Z}	σ_{h}^{0}	R_ℓ	$A^{0,\ell}_{FB}$
0.3 MeV	0.2 MeV	0.008 nb	0.004	0.0001

LEP energy uncertainties specified as covariance matrix, giving uncertainties and correlations of each energy point. Translation into uncertainties on POs more complicated. Method: vary energy errors by ε, repeat full σ/A_{FB} fit and extract effective energy error matrix for POs:

$$\mathcal{V}_{\pm} = (1 \pm \varepsilon) \mathcal{V}_{\mathsf{E}_{\mathsf{cm}}} + \mathcal{V}_{\mathsf{exp}} \rightarrow \mathcal{V}_{\mathsf{E}_{\mathsf{cm}}} = \frac{\mathcal{V}_{+} - \mathcal{V}_{-}}{2\varepsilon}$$

Studied by all expts, consistent $\mathcal{V}_{\mathsf{E}_{\mathsf{cm}}}$

$m_{\sf Z}$	0.0017 ²	-0.0006^{2}	-0.0018^{2}	0.0017^{2}
Γ_{Z}		0.0012^{2}	-0.0027^{2}	-0.0014^{2}
σ_{h}^{0}			0.011^{2}	0.0073^{2}
R_{e}				0.013^{2}

Changes since last summer

- Changes of experimental numbers marginal
- Rather large effect from ZFITTER 6.10 \Rightarrow 6.23 $\mathcal{O}(\alpha^3)$ treatment of fermion-pair radiation:

$$\Rightarrow m_{\mathsf{Z}} + 0.5 \,\mathsf{MeV} \ , \ \Gamma_{\mathsf{Z}} + 0.7 \,\mathsf{MeV}$$
 ($pprox 25 \,\%$ of error)

(ALEPH data re-fitted)

Results

Combination: Fit to 4×9 PO

accounting for common errors and correlations.

Good consistency:

 $\chi^2/d.o.f. = 32.6/27$ (21 % prob., 9-par average)

Results for R_{ℓ} and $A_{FB}^{0,\ell}$ consistent with lepton universality

Results for R_{ℓ} consistent with lepton universality

 $lpha_{
m s}$ from R_{ℓ} : $lpha_{
m s} = 0.1228 \pm 0.0037_{
m exp}$ $\pm 0.002_{
m QCD}$

Results for $A_{FB}^{0,\ell}$ consistent with lepton universality

 $\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23099 \\ \pm 0.00054$

Derived Parameters

$$\sigma_{\rm h}^0 = \frac{12\pi}{m_{\rm Z}^2} \frac{\Gamma_{\rm ee}\Gamma_{\rm had}}{\Gamma_{\rm Z}^2} \ , R_\ell = \frac{\Gamma_{\rm had}}{\Gamma_{\ell\ell}}$$

$$\Rightarrow \Gamma_{had}, \ \Gamma_{\ell\ell} \quad and$$

 $\Gamma_{inv} \equiv \Gamma_{Z} - \Gamma_{had} - 3\Gamma_{\ell\ell}$

 $\Rightarrow \text{neutrino generations}$ $N_{\nu} = \left(\frac{\Gamma_{\nu\nu}}{\Gamma_{\ell\ell}}\right)_{\text{SM}} \frac{\Gamma_{\text{inv}}}{\Gamma_{\ell\ell}} = 2.984 \pm 0.008$ $\text{with } \left(\frac{\Gamma_{\nu\nu}}{\Gamma_{\ell\ell}}\right)_{\text{SM}} = 1.9912^{+0.0012}_{-0.0003}$

Alternatively, assuming $N_{\nu} = 3$ and $(\Gamma_{inv})_{SM} = 501.7^{+0.1}_{-0.9} \text{ MeV}$ extra contributions are

$$\Gamma_{inv}^{new} = -2.7^{+1.7}_{-1.5} \text{ MeV or}$$

 $\Gamma_{inv}^{new} < 2.0 \text{ MeV} @ 95\% \text{ CL}$

Approximate Error Breakdown

- Common error sources largely disentangled for standard LEP parameters
- Systematics dominate only for m_{Z} (ΔE_{cm}) and σ_{h}^{0} (lumitheory).

- Special fits with independent
 *m*_Z for main stages of LEP calibration.
- Direct fit to 1993-1995 hadron cross-sections of all expts
- \Rightarrow results consistent

'Former' caveat:

- γ/Z intereference term (j_{had}^{tot}) taken from SM.
- With LEP1 data alone poor discrimination $m_{\mathsf{Z}} \leftrightarrow j_{\mathsf{had}}^{\mathsf{tot}}$
- Now precise data away from Z⁰ peak available

LEP 2, TOPAZ, new VENUS result PL**B447** (1999) 167

 $\Rightarrow \Delta m_{\rm Z} \approx 2.5 \, {\rm MeV}, \; \Delta j_{\rm had}^{\rm tot} < 0.1$

Fits in the SM

LEP 9 parameters equivalent to σ/A_{FB} when fitted in the SM ?

Each experiment performed SM fits both to PO and RO

(constraining $m_{\rm t}$ and $\Delta \alpha^{(5)}_{\rm had}$)

	Aleph	Delphi	L3	Opal
$\Delta m_{\sf Z}$ (MeV)	-0.7	+0.5	0.0	+0.1
$\Delta \log_{10}(m_{ m H})$	-0.01	+0.04	+0.02	+0.04
$\Delta lpha_s$	0.0000	-0.0002	+0.0002	+0.0002

Small differences, caused e.g. by small $m_{\rm H}$ dependence of γ/Z interference, but all $\leq 10 \%$ of the error.

In the SM fits to RO and PO practically identical !

Presumably final LEP lineshape results (OPAL \approx weeks)

$m_{\sf Z}$ (GeV)	91.1875	±	0.0021	23 ppm
$\Gamma_{\sf Z}$ (GeV)	2.4952	\pm	0.0023	0.9×10^{-3}
$\sigma_{\sf had}$ (nb)	41.540	\pm	0.037	0.9×10^{-3}
R_ℓ	20.767	\pm	0.025	1.2×10^{-3}
A^0_{FB}	0.01714	±	0.00095	

Details of the combination of the lineshape results will be presented in a forthcoming CERN-EP note.

