

in Au+Au Collisions at AGS Strangeness Production E917 Results on

Institute of Physics, Academia Sinica, Taiwan Wen-Chen Chang 章文箴 2000/07/27

Strangeness Enhancement as QGP signature

- Strange constituent quarks are absent in the initial state of NN collisions and have higher energy threshold to be produced.
- Strangeness Enhancement in the Relativistic Heavy Ion collisions relative to NN interactions:
- Hadronic secondary scattering in heavy-ion collisions would help populate the strange hadrons
- strangeness-carrying particles after hadronization. (QGP) in relativistic heavy ion collisions, would result in an abundant The occurrence of a de-confined quark matter, Quark-Gluon-Plasma production of strange quarks and thus an enhanced production of
- above two scenarios Experimental baseline by pure (or mostly) hadronic interactions need to be established in order to distinguish the

E917 Measurement of Strangeness Production at AGS

- K+,K- Yield at 6, 8, 10.8 GeV/c.
- A Yield at 10.8 GeV/c.

Ø

1.5 2 2.5 Vs - Vs, (AGeV)

J. C. Dunlop

Excitation Function of K+,K-

at 4, 6, 8 and 10.8 The mid-rapidity spectra and yield of K+ and K-AGeV

K+, K- and K-/K+ ratio(~0.2) increases with beam energy above production threshold

dN/dY at Y_m

production is observed No sudden jump in the within this energy range.

K+/π+ Ratio vs Beam Energy

- Ratio K+/π+ at y_{CM} increases from 0.027 at 2 AGeV to 0.202 at 10.8
- Re-scattering of hadrons kaons within this energy range contributes the enhancement of production threshold (sqrt(s) = 2-6 AGeV) near
- range. appplicable over this full energy hadronic rescattering may be same enhancement mechanism of The enhancement of $(K/\pi)_{AA}$ to K/π)_{pp} decrease steadily from 4 to 60 A GeV, suggesting that the

•Phys. Lett. B476 (2000) 1-8 Phys. Rev. C61(2000) 031901

φ Meson as a QGP Probe

- ø is the lightest bound state of hidden strangeness whose s and s quarks coalescence during hadronization stage production is suppressed by OZI rule in pp and πp collisions. In QGP scenario, \(\phi \) can be easily produced by
- That φN and φπ re-scattering cross section is small inside a decaying QGP. (~1mb) makes \(\phi \) to be a penetrating probe produced
- collisions baryon density of nuclear medium in heavy-ion demonstrated to be sensitive to the temperature and The mass and width of vector mesons is theoretically

Experimental Status

SSS		AGS		SIS-	
NA49	NA50	E859	E917	FOPI	Experiment
Pb+Pb	Pb+Pb	Si+Au	Au+Au	Ni+Ni	Collision
158	158	14.6	11.0	1.93	Mom (A GeV)
17.4	17.4	5.4	4.86	2.4	Sqrt(s) (GeV)
K+K-	$\mu^*\mu^-$	K * K -	K*K-	K * K -	Decay Mode

- No modification of \(\phi \) mass or width is reported
- At SPS, inverse slope parameter (T_{inv}) is larger in the detection of 2K modes (NA49) than that in di-muon mode (NA50).
- NA50: The $\phi/(\rho+\omega)$ ratio increases up to 1 in the most central bin
- NA49: The φ/<π> ratio is a factor of 3-5 larger in Pb+Pb central events compared to that in the pp interactions at the same energy.

The Detection of ϕ Mesons

- 10.8 GeV
- kaons or one pbar LVL2 Trigger: two-
- settings: 19 and 14 degrees. I wo spectrometer angle
- the total event sample About 3000 \phi mesons

K+K-Invariant Mass Distribution

m_t-m_b (GeV)

Yield of ϕ per Participant Nucleon

- A factor of 2.5 enhancement between the most peripheral and central bins.
- The ϕ yield increases nonlinearly with Npp, similar to kaons.

Npp: # of participant nucleon

φ/<π> Ratio

ψ/<π> ratio increases

Signifying an strongly with centrality. relativistic heavy-ion central collisions of strange mesons in the relative to the nonstrangeness production enhancement of interactions.

♦/K+ Ratio

- independent of centrality.
- centrality, like K+ and K-(PRC 58, 3523). of enhancement over
- mechanism, possibly the yield hints at a common hadronic secondary heavy-ion collisions: This similarity in centrality interaction in the centra

Wen-Chen Chang $NN \rightarrow \phi N, KN$

Strangeness Enhancement over Beam Energy

AA Central Collisions

0/K+

Sqri(s) (GeV)

0/<\T>

0/ K-

at sqrt(s)=5 AGeV and become more at SPS.

at SPS but values of this ratio are equal around sqrt(s)=5 Ratio \(\psi/K :\) stronger enhancement in AA relative to pp seen AGeV.

♦/(K+K-) Ratio

- ♦ /(K+K-) strongly centrality. decreases with
- $\phi / (K + K_{-}) \sim 1 / V$ and Npp~V. From coalescence model,

0/(K+ * K-)

10

Rapidity:12<y<1.6

10

picture of kaons being coalesced into \phi. consistent with the ratio $\phi/(K+K-)$ vs Npp is The decreasing of the

Coalescence from Kaons

- spin 0. φ(ss): spin 1, angular momentum = 0; K(us):
- space density) Wigner function (phase
- $f^{L=1}(\mathbf{g},r) = \left[\frac{16}{3} \frac{r^2}{b^2} 8 + \frac{16}{3} b^2 k^2\right] \exp\left(-\frac{r^2}{b^2} b^2 k^2\right)$ From charge radius of
- yield. Kaon coalescence cannot fully account for total of kaons: b=0.4-0.5 fm

A.J. Baltz and C. Dover PRC 53, 362

Λ/\overline{p} Ratio

- to light anti-quarks. Ratio of strange anti-baryon to non-strange one, (Λ/\overline{p}) reflect the relative abundance of \overline{s} quarks
- Hadronic model predicts values in the range 0.8-
- E859 Si+Au: $\Lambda/\bar{p} = 2.9 \pm 0.9 \pm 0.5$
- arising from $\overline{\Lambda}$: $\overline{\Lambda}/\overline{p} = 3.5(central), 1.0(peripheral)$. assuming caused by different acceptance of \bar{p} E864/E878 discrepancy in \overline{p} measurement at $p_t=0$:

E917 Measurement of Λ/\bar{p} Ratio

G. Heintzelman

Peripheral 12-77%

Rapidity range 1.0<y<1.4.

- Transverse Mom range: m_t - m_0 >250 MeV.
- Ratio:

Central 0-12%

Peripheral 12-77% $\overline{\Lambda}/\overline{p} = 3.6^{+4.7}_{-1.8}$

 $\overline{\Lambda}/\overline{p} = 0.26^{+0.19}_{-0.15}$

Summary

- Hadronic secondary interaction in heavy ion as kaons per N_{pp} and also relative to non-strange collisions enhances the yield of \$\phi\$ mesons as well π mesons in the central collisions at AGS.
- At SPS, a larger value of ratio ϕ/K is seen in AA equal around sqrt(s)=5 AGeV. relative to pp interactions, while they are about
- the peripheral events. than 1 in the central collisions and less than 1 in Λ/\bar{p} ratio is measured by E917 to be larger

