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Results of the MSU Group on Uncertain-
ties of PDFs and Phys. Observables

(based on apparatus of CTEQ global analysis)

Lagrange Multiplier Method

{ for speci�c physical variables, say X {

� Uncertainty of X: �X { within "one s.d." al-

lowed by global �t to all pertinent data sets;

� Three sets of PDFs, with �X = �1;0;1, which
can be used for relevant applications;

� This can be done for any X: e.g.

� �W;Z, moments of y and pT distributions;

� various Parton Luminosities at a given
p
s;

� �Higgs, : : :

Hessian Method for Parton Distributions

and for general physical variables

� Eigenvalues and Eigenvectors of the Hessian;

� Given physical variable X and the vector @X=@ai,

can calculate �X =
q
2
P

i;j
@X
@ai

(H�1)ij
@X
@aj

;

� Systematically identify \Flat directions" where

parametrization can be tightened, or improve-

ments in experimental constraints are needed;

� Collection of PDFs on the surface of \one s.d."

of the Hessian, suitable for probing uncertain-

ties of a variety of physical variables.



Results from

Barone, Pascaud, and Zomer

A New Global Analysis Of Dis Data

And The Strange Sea Distribution

� A new global analysis of DIS data, character-

ized by an enlarged neutrino and antineutrino

data set (BEBC, CDHS, CDHSW), but no CCFR;

� Special emphasis is given to the strange sector;

The strange sea distribution is determined in-

dependently of the non-strange sea;

� The possibility of a charge asymmetry, s(x) 6=

�s(x), is tested.



Strange Sea Determination
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Points: CCFR dimuon determination of xs(x;Q).
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Charge Asymmetry of Strange Sea
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* s(x) appears to be harder than �s(x) { favoring

the idea of intrinsic sea theory.
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Global QCD Analysis of Parton Distributions

In principle

) Experimental data on all available hard scat-

tering processes

) NLOQCD Hard-cross-sections (or beyond) for

these processes

) Parametrized functions for the non-perturbative

initial parton distributions

+ NLO QCD-evolution of these functions

Global analysis: compare theoretical calculation

(based on factorization theorems of PQCD) to

world's experimental data, to determine the fun-

damental QCD constants (�QCD;mi; i = quark

avors) and the non-perturbative PDF parame-

ters (usually by �2 minimization).

In Practice

Many subtleties and complications ...

due to imperfect theory and/or experiment,

which are under continuous development.

) Several ongoing global analysis e�orts. (



Global QCD Fit

* Parametrization of the non-perturbative PDFs:

(at Q0 = 1 GeV)

fi(x;Q0) = ai0x
ai

1(1� x)a
i

2(1 + ai3x
ai

4):

(with exception of �d=�u)

* The �tting is done by minimizing a global \chi-

square" function, �2global. This function serves as

a �gure of merit of the quality of the global �t,

�2global =
X
n

X

i

wn
h
(Nndni � tni) =�

d
ni

i2

+
X
n

h
(1�Nn) =�

N
n

i2
(1)

dni : data point

�dni: combined error

tni: theory value (dependent on faig)

for the ith data point in the nth experiment. wn:

a priori weighing factor for certain expts.

* This approximate �2 function does not have the

full probabilistic signi�cance of rigorous statistical

analysis. It can be improved (cf. below).

The methods of uncertainty analysis remains valid.



Physical processes and experiments �

DIS { Neutral Current (e,� on p,d)

SLAC, BCDMS, NMC, E665, H1, ZEUS

DIS { Charged Current (�;�� on nucleus)

CCFR(F2; F3)

Drell-Yan { continuum (lepton-pair)

E605, E866 (d/p ratio)

Drell-Yan { W and Z

CDF (W-lepton-asymmetry)

Direct Photon Production

WA70, UA6, E706, ISR, Ua2, CDF, D0

Inclusive Jet Production

CDF, D0

Lepto-production of Heavy Quark

H1, ZEUS

Hadro-production of Heavy Quark

CDF, D0
�|||||||
Red color indicates \New" for current analysis
Green indicates \often not used" in global analysis



Coverage of Current Experiments in the (x;Q) plane
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Treatment of Correlated Experimental Errors:

Correlated systematic errors ajk
where k = 1 : : : ns

\True" statistical �2:

�2 =
X

j

�
dj � tj

�2

�2j
�
X

kk0

Bk

�
A�1

�
kk0

Bk0: (2)

The index j labels the data points. The indices

k and k0 label the source of systematic error

and run from 1 to ns.

Bk is the vector

Bk =
X

j

�
dj � tj

�
ajk

�2j
; (3)

and Akk0 is the matrix

Akk0 = Ækk0 +
X

j

ajkajk0

�2j
: (4)



Application to the H1 data on F2

Lagrange �W �B �2=172 probability
multiplier in nb

3000 2.294 1.0847 0.212
2000 2.321 1.0048 0.468
1000 2.356 0.9676 0.605

0 2.374 0.9805 0.558
-1000 2.407 1.0416 0.339
-2000 2.431 1.0949 0.187

-3000 2.450 1.1463 0.092

�2=N of the H1 data, including error correla-

tions, compared to PDFs obtained by the La-

grange multiplier method for constrained val-

ues of �W

2.25 2.3 2.35 2.4 2.45 2.5
ΣW BRlep

0.95

1

1.05

1.1

1.15

H
1

Χ2
�N



The Standard Error-Matrix (Hessian) Method

At the minimum of the �2 function,

�2 = �20+
1

2

X

i;j

Hijyiyj

where yi = ai � a0i is the displacement from the

minimum, and Hij is the Hessian.

Once Hij is determined from a global �t,

* the eigenvalues and complete orthonormal set

of eigenvectors of Hij give insight on the uncer-

tainties of PDF's around the minimum;

* allow to identify systematically the particular

degrees of freedom which need further experimen-

tal input in future global analyses;

* allow a uniform way to determine uncertainties

of all physical variables (X) of interest:

�X =

vuut2
X
i;j

@X

@ai
(H�1)ij

@X

@aj
:

When applied to study the uncertainty of the W

cross-section at hadron colliders, the results are

in agreement with those of using the Lagrange

multiplier method.



Comparison of data and CTEQ5m (\theory")
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The histogram includes all data used in the �t except
jet production.

The curve has no adjustable parameters; it's just

N exp(�x2)=
p
2�

where N is the number of data points. The area under
the curve (or histogram) is N .

Di�erences mi�ti are within the published measurement
errors.

At least globally the distribution of uctuations is Gaus-

sian with the right width.



Eigenvalues of the error matrix
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Variation of �2 along the eigenvectors

Χ2 along eigenvectors # 7-18HE from eps=0.05 for 5mN31L
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The parabola has no free parameters, and is the same
on each graph = 1200+ x2.

The variable x is C=
p
e, where the displacement from

the minimum is C U .
(U=eigenvector, e=eigenvalue).

The minimum is approximately quadratic, at least out
to ��2 = 100. (Compare �2

min
= 1200.)

These eigenvectors of the error matrix have the smallest

eigenvalues { i.e., the steep directions.



Results of the MSU Group on Uncertain-
ties of PDFs and Phys. Observables

(based on apparatus of CTEQ global analysis)

Lagrange Multiplier Method

{ for speci�c physical variables, say X {

� Uncertainty of X: �X { within "one s.d." al-

lowed by global �t to all pertinent data sets;

� Three sets of PDFs, with �X = �1;0;1, which
can be used for relevant applications;

� This can be done for any X: e.g.

� �W;Z, moments of y and pT distributions;

� various Parton Luminosities at a given
p
s;

� �Higgs, : : :

Hessian Method for Parton Distributions

and for general physical variables

� Eigenvalues and Eigenvectors of the Hessian;

� Given physical variable X and the vector @X=@ai,

can calculate �X =
q
2
P

i;j
@X
@ai

(H�1)ij
@X
@aj

;

� Systematically identify \Flat directions" where

parametrization can be tightened, or improve-

ments in experimental constraints are needed;

� Collection of PDFs on the surface of \one s.d."

of the Hessian, suitable for probing uncertain-

ties of a variety of physical variables.



Some Details of

Strange Sea Analysis of Barone etal.

� Data sets*

CC-DIS (�; ��): BEBC, CDHS, CDHSW

NC-DIS (e; �): BCDMS, NMC, H1

Drell-Yan: E605, NA51, E866

(* The CCFR data, coming from a di�erent preanalysis,

are not included.)

� Data have been properly reanalyzed: Bin cen-

ter corrections, EW radiative corrections, cor-

rections for nuclear and isoscalarity e�ects are

applied.

� Error correlations have been taken into account.

� Use the Fixed (3) Flavor Number Scheme to

treat charm mass.

� The kinematic cuts: Q2 � 3:5 GeV2, W2 � 10

GeV2 (to avoid higher-twist e�ects). For the

CDHSW data, exclude controversial x < 0:1

region.

The �2's of three �ts

# pts �2 fit1 �2 fit1b �2 fit2

(� = 0:67) (� = 0:5) (s(x) 6= �s(x))

2657 2430.8 2492.4 2405.0


