## STUDIES OF THE STRONG COUPLING

Zoltán Trócsányi Institute of Nuclear Research and University of Debrecen, Hungary On behalf of the OPAL Collaboration

Osaka, July 27, 2000.

- Purpose of  $\alpha_s$  studies
- Developments since ICHEP1998
  - 1. New measurements based on four jets:
    - $\alpha_s$  from ALEPH
    - $\alpha_s$  and colour factors from OPAL
  - 2. Energy dependence from
    - $e^+e^-$  annihilation (JADE & OPAL)
    - hadron collisions (CDF)
  - 3. Flavour independence (OPAL)
- Status of  $\alpha_s$  in Y2K

PA-03c10, abstracts: #114, #115, #162, #251, #1080



### Purpose of $\alpha_s$ studies

n+1st  $\alpha_s$  measurement — why bother?

## QCD:

- THEORY: SU( $N_c$ ) gauge theory with 1(+6) parameter: flavour independent coupling (+ quark masses) Value of  $\alpha_s(M_{Z^0})$  is not predicted by theory
- PRACTICE:
   Theory + phenomenological models

   uncertainties in theoretical predictions for

   cross sections are translated into

   uncertainties of a single parameter
  - $\alpha_s(M_{{f Z}^0})$  measurements test "practical QCD"
  - Measurements of colour factors,  $\alpha_s(Q)$  test SU( $N_c$ ) dynamics & particle spectrum
  - $\alpha_s^Q(M_{Z^0})$  measurements using flavour tagged samples test assumption of flavour independence

## **NLO** CORRECTIONS TO FOUR-JET **OBSERVABLES**

 $\langle D \rangle_{\rm LO} = 0.0216 \leftrightarrow \langle D \rangle_{\rm exp} = 0.0618 \pm 0.0024$ 

 $\Rightarrow$  higher order corrections must be large

Loop-corrections for  $+\gamma^*, Z^0 \rightarrow \bar{q}q\bar{Q}Q, \ \bar{q}q\bar{q}q$ :







 $Z^0$ 

 $\rightarrow \bar{q}qgg$ 

Glover, Miller and Campbell Bern, Dixon, Kosower and Weinzierl

used in partonic NLO Monte Carlo programs DEBRECEN Z. Nagy and Z. T. MENLO PARC L. Dixon and A. Signer EERAD2 J.M. Campbell, M.A. Cullen and E.W.N. Glover MERCUTIO

S. Weinzierl and D.A. Kosower

 $\Rightarrow \alpha_s$  and colour factor measurements

# $\alpha_s(M_{\rm Z^0})$ from four-jet final states obtained with ALEPH



 $rac{lpha_s(M_{\rm Z^0})}{2\pi} \ln^2 \! {
m y}_{
m cut} \simeq 0.5 \Rightarrow$  NLLA is necessary

## DEPENDENCE ON THE RENORMALIZATION SCALE



Final result:  $\alpha_s(M_{Z^0}) = 0.1172$  $\pm 0.0001(\text{stat.}) \pm 0.0008(\text{had.}) \pm 0.0040(\text{theo.})$ 

### SYSTEMATIC UNCERTAINTIES AND CHECKS

|                                        | $\alpha_{\rm s}({ m M_Z})$ | $\mathbf{x}_{\mu}$ | $\Delta \alpha_{\rm s}$ | $\chi^2/dof$ | ] |
|----------------------------------------|----------------------------|--------------------|-------------------------|--------------|---|
| # Charged tracks = $8$                 | $0.11772 \pm 0.00013$      | $0.67\pm0.03$      | +0.00012                | 7.2/8        |   |
|                                        | $0.11736 \pm 0.00012$      | 1.                 | +0.00012                | 78.3/9       |   |
| $ \cos \Theta_T  < 0.9$                | $0.11769 \pm 0.00014$      | $0.65\pm0.03$      | +0.00009                | 8.0/8        |   |
|                                        | $0.11730 \pm 0.00012$      | 1.                 | +0.00006                | 82.8/9       |   |
| No cut on $ \cos \Theta_T $            | $0.11759 \pm 0.00013$      | $0.66\pm0.03$      | -0.00001                | 6.9/8        |   |
|                                        | $0.11723 \pm 0.00011$      | 1.                 | -0.00001                | 88.2/9       |   |
| $E_{neutral} \notin [1, 2] \text{GeV}$ | $0.11837 \pm 0.00016$      | $0.53 \pm 0.02$    | +0.00077                | 7.0/8        |   |
|                                        | $0.11752 \pm 0.00011$      | 1.                 | +0.00028                | 219.6/9      |   |
| Charged Tracks                         | $0.11877 \pm 0.00015$      | $0.60 \pm 0.02$    | +0.00077                | 11.2/8       |   |
|                                        | $0.11815 \pm 0.00012$      | 1.                 | +0.00091                | 129.6/9      |   |
| HERWIG Hadcorr                         | $0.11693 \pm 0.00014$      | $0.61\pm0.03$      | -0.00067                | 15.2/8       |   |
|                                        | $0.11641 \pm 0.00012$      | 1.                 | -0.00084                | 127.8/9      |   |
| ARIADNE Hadcorr                        | $0.11743 \pm 0.00013$      | $0.71\pm0.03$      | -0.00017                | 4.5/8        |   |
|                                        | $0.11718 \pm 0.00012$      | 1.                 | -0.00006                | 53.1/9       |   |
| PYTHIA,ME                              | $0.12225 \pm 0.00015$      | $0.60 \pm 0.02$    | +0.0047                 | 52.0/8       |   |
|                                        | $0.12160 \pm 0.00012$      | 1.                 | +0.0044                 | 196.2/9      | * |
| $PYTHIA, Q_0$                          | $0.12087 \pm 0.00016$      | $0.50 \pm 0.02$    | +0.0033                 | 36.0/8       |   |
|                                        | $0.11965 \pm 0.00012$      | 1.                 | +0.0024                 | 332.6/9      | * |
| Renorm. scale                          | $0.11885 \pm 0.00012$      | 0.5                | +0.0013                 | 463.9/9      |   |
|                                        | $0.12123 \pm 0.00013$      | 2.                 | +0.0040                 | 1704.6/9     | ] |
| 1995 Data                              | $0.11783 \pm 0.00019$      | $0.66 \pm 0.04$    | +0.00023                | 12.1/8       |   |
|                                        | $0.11739 \pm 0.00016$      | 1.                 | +0.00015                | 57.1/9       | * |

### ★ Not included in final error

# Simultaneous measurement of the QCD colour factors and $\alpha_s$ at OPAL

Observables used:

- $D_2$  and  $R_4$  for gaining sensitivity to  $\alpha_s$ :
- $\chi_{\rm BZ}$ ,  $\theta^*_{\rm NR}$ ,  $\phi_{\rm KSW}$ ,  $\alpha_{34}$  for gaining sensitivity to  $C_F$  and  $C_A$

Fitted parameters:

$$\eta = rac{lpha_s C_F}{2\pi}$$
 ,  $x = rac{C_A}{C_F}$  and  $y = rac{T_R}{C_F}$ 

New features:

- Most complete systematics
- Theory is at least NLO
- Simultaneous measurement and use of  $R_4$
- Results are unfolded to usual parameters:

 $C_A = 3.02 \pm 0.25 (\text{stat.}) \pm 0.44 (\text{syst.})$ 

 $C_F = 1.34 \pm 0.13 (\text{stat.}) \pm 0.19 (\text{syst.})$ 

 $\alpha_s = 0.120 \pm 0.011 (\text{stat.}) \pm 0.016 (\text{syst.})$ 



## Results for x and y

NLO corrections stabilize the results for y and does not affect x:

 $T_R/C_F = 0.37 \pm 0.04 (\text{stat.}) \pm 0.05 (\text{syst.})$ 

 $C_A/C_F = 2.25 \pm 0.08 (\text{stat.}) \pm 0.13 (\text{syst.})$ 



### Systematic uncertainties

|                                                     | η                      | x                  | y                  | $\chi^2/d.o.f.$ |
|-----------------------------------------------------|------------------------|--------------------|--------------------|-----------------|
| Standard analysis                                   | 0.0256±0.0003          | 2.25±0.08          | 0.37±0.04          | 98.5/79         |
| Charged track only                                  | 0.0257±0.0003          | 2.24±0.08          | 0.37±0.04          | 127.1/79        |
| Cluster only                                        | $0.0256 \pm 0.0003$    | $2.25 \pm 0.08$    | 0.38±0.04          | 124.2/79        |
| $ \cos 	heta_{\mathrm{thrust}}  < 0.7$              | $0.0256 \pm 0.0003$    | $2.26 \pm 0.08$    | 0.38±0.04          | 117.9/79        |
| $N_{ch} \ge 8$                                      | $0.0256 \pm 0.0003$    | 2.25±0.08          | 0.37±0.04          | 98.3/79         |
| Detector effects                                    | $\Delta \eta = 0.0000$ | $\Delta x = 0.004$ | $\Delta y = 0.002$ |                 |
| HW-ME+JT-PS*                                        | 0.0256±0.0003          | 2.19±0.08          | 0.34±0.04          | 534.1/79        |
| JT-ME( $a+1\sigma$ )+JT-PS $^{*}$                   | $0.0258 \pm 0.0003$    | 2.15±0.08          | $0.33 \pm 0.04$    | 97.5/79         |
| $JT	ext{-ME}(\sigma_q \ - \ 1\sigma)	ext{+JT-PS}^*$ | $0.0257 \pm 0.0003$    | 2.16±0.08          | $0.33 \pm 0.03$    | 156.5/79        |
| JT-ME <sup>*</sup> +HW-PS                           | $0.0246 \pm 0.0003$    | $2.31 \pm 0.08$    | $0.39 \pm 0.04$    | 112./79         |
| JT-ME $^*$ +JT-PS( $a+1\sigma$ )                    | $0.0253 \pm 0.0003$    | $2.28 \pm 0.08$    | $0.37 \pm 0.04$    | 106.6/79        |
| JT-ME $^{*}$ +JT-PS( $\sigma_{q}-1\sigma$ )         | $0.0253 \pm 0.0003$    | $2.28 \pm 0.08$    | $0.37 \pm 0.04$    | 106.1/79        |
| JT-ME $^*$ +JT-PS( $Q_0+1\sigma$ )                  | $0.0252 \pm 0.0003$    | $2.29 \pm 0.08$    | $0.37 \pm 0.04$    | 101.1/79        |
| $JT	ext{-ME}^*	ext{+JT-PS}(udsc)$                   | $0.0260 \pm 0.0003$    | 2.19±0.07          | $0.33 \pm 0.03$    | 173.1/79        |
| Hadronization                                       | $\Delta \eta = 0.0003$ | $\Delta x = 0.043$ | $\Delta y = 0.016$ |                 |
| $x_{\mu}=1.0$ in angular corr.                      |                        |                    |                    |                 |
| and                                                 |                        |                    |                    |                 |
| $x_{\mu}=0.5$ in $R_{4}$ and $D_{2}$                | $0.0235 \pm 0.0003$    | $2.40 \pm 0.08$    | $0.28 \pm 0.03$    | 118.0/79        |
| $x_{\mu}=2.0$ in $R_{4}$ and $D_{2}$                | $0.0271 \pm 0.0003$    | 2.14±0.08          | $0.42 \pm 0.04$    | 103.7/79        |
| $x_{\mu}=1.0$ in $R_{4}$ and $D_{2}$                |                        |                    |                    |                 |
| and                                                 |                        |                    |                    |                 |
| $x_{m \mu}=0.5$ in angular corr.                    | $0.0256 \pm 0.0003$    | $2.25 \pm 0.08$    | $0.37 \pm 0.03$    | 98.2/79         |
| $x_{\mu}=2.0$ in angular corr.                      | 0.0257±0.0003          | $2.24 \pm 0.08$    | $0.37 \pm 0.04$    | 99.0/79         |
| R-matching for $D_2$                                | $0.0281 \pm 0.0005$    | $2.06 \pm 0.09$    | $0.40 \pm 0.03$    | 103.4/79        |
| Theoretical uncertainty                             | $\Delta \eta = 0.0013$ | $\Delta x = 0.096$ | $\Delta y = 0.038$ |                 |
| $0.8 < C_i^{\text{tot}} < 1.2$                      | 0.0255±0.0002          | 2.28±0.06          | 0.39±0.03          | 339.6/96        |
| Fit range                                           | $\Delta \eta = 0.0001$ | $\Delta x = 0.033$ | $\Delta y = 0.013$ |                 |
| 5-parton background                                 | 0.0257±0.0003          | 2.18±0.08          | 0.34±0.04          | 112.5/79        |
| 5-parton background                                 | $\Delta \eta = 0.0001$ | $\Delta x = 0.070$ | $\Delta y = 0.039$ |                 |
| Total systematic error                              | $\Delta \eta = 0.0013$ | $\Delta x = 0.130$ | $\Delta y = 0.053$ |                 |

# Jet studies with JADE and OPAL: $\alpha_s(Q)$ from $e^+e^-$ -annihilation

- Study of jet rates using four different jet-finders

   JADE, Durham, Cambridge and cone at
   nine different collision energies between 35 and
   189 GeV
- Similarity of JADE and OPAL is utilized to perform a uniform  $\alpha_s$ -analysis over a wide energy range
- New analysis of JADE data using modern theoretical input
- Energy dependence is compatible with three-loop running with  $\chi^2/{\rm d.o.f.}$  = 7.85/7
- Competitive  $\alpha_s$  result from running,  $\alpha_s(M_{\rm Z^0}) = 0.1187^{+0.0034}_{-0.0019}$





## $\alpha_s(Q)$ from CDF

- First  $\alpha_s$  measurement at the TEVATRON based upon inclusive jet cross section
- CDF run 1B, 87  ${\rm pb}^{-1}$  in 33  $E_{\perp}$  bins
- Discrepancies with theory in the high  $E_{\perp}$  region ... could be accommodated by modifications of parton distribution functions (CTEQ4HJ)
- $\alpha_s(Q)$  from Q = 40 to 450 GeV in a single experiment

 $\alpha_s(M_{\mathbf{Z}^0}) =$ 

 $0.1129 \pm 0.0001 (\text{stat.})^{+0.0078}_{-0.0089} (\text{syst.})$ 

## $\alpha_s(Q)$ from CDF with CTEQ4M



Flavour-threshold-like deviation from three-loop running above 250 GeV, and  $\alpha_s$  in PDF and measured is not quite consistent

## $\alpha_s(Q)$ from CDF with CTEQ4HJ

### **CDF** Preliminary



Compatible with three-loop running between 40 and 450 GeV, but

 $\alpha_s$  in PDF and measured is not quite consistent

## $\alpha_s(Q)$ from CDF with MRST2

### **CDF** Preliminary



 $\alpha_s$  in PDF and measured is consistent, but flavour-threshold-like deviation from three-loop running above 250 GeV

## Flavour independence of $lpha_s$

Improvement over previous OPAL analyses:

- Larger event sample  $(2.5 \times b, 33 \times c)$
- Improved b and uds tagging, b-purity 96 %
- NLO theory

G. Rodrigo, A. Santamria and M. Bilenky W. Bernreuther, A. Barndenburg and P. Uwer P. Nason and C. Oleari



 $R^{c} = 0.997 \pm 0.038 \text{(stat.)} \pm 0.030 \text{(syst.)} \pm 0.012 \text{(theo.)}$  $R^{b} = 0.993 \pm 0.008 \text{(stat.)} \pm 0.006 \text{(syst.)} \pm 0.011 \text{(theo.)}$ 

### World summary of $\alpha_s$ -measurements

### $\alpha_s(M_{\mathbf{Z}^0}) = 0.1184 \pm 0.0031$

