Studies of b-quark fragmentation

Vitaliano Ciulli

Scuola Normale Superiore & INFN Pisa

Talk given at:

ICHEP 2000

XXXth International Conference on High Energy Physics July 27 - August 2, 2000, Osaka, Japan

Motivation

- b-quark tragmentation can be studied at e+ecolliders using x_b= E_{b-hadron} / E_{beam} distribution:
- Test fragmentation models (mainly non-pert. part)
- Large b mass ⇒ b energy prior to hadronization from pQCD
- Hadronization effects phenomenologically modelled
- many other heavy flavour measurements σ<x_b> is used to assign systematic uncertainties in
- <x_b> allows the comparison of different measurements, while fitted model parameters strongly depend on perturbative part
- A model independent measurement of <x_b> is therefore an important issue for b physics

New Preliminary Results

ALEPH (abstract 173)

- uses semi-exclusive reconstruction of B→D(*)&X
- updates the preliminary result submitted to 2000 Winter conferences

SLD (abstract 690)

- uses inclusive b reconstruction from b-decay vertex
- updates to full statistics 1996-98 previously published result (PRL 84:4300-4304, 2000)

ALEPH selection

Signal purity: 63-90 %

B energy reconstruction

 Neutrino momentum estimated from c.m. energy constraint:

$$E_{v} = E_{tot}^{hemi} - E_{vis}^{hemi}$$

$$E_{vis} = E_{beam} + \frac{m_{same}^{2} - m_{oppo}^{2}}{4E_{.}}$$

- x_B resolution:
- 0.04 in core (50-60%)
- 0.10 in tails (50-40%)

<x_B> extraction

Haw x_B distribution must be corrected for: Detector resolution Acceptance

Missing pions from D** and D0* decays

x_B of the weakly decaying B meson

Missing pions from B resonances decays Fraction of B**: f(B**)=0.279 ± 0.059

→ x_B of the leading B meson

<x_B> extraction (2)

- Model dependent:
- JETSET 7.4 + fragmentation model
- Fit fragmentation model parameter to raw x_b distribution

164/94	0.712±0.005±0.005	Collins
97/94	0.746±0.004±0.007	Kartvelishvili
116/94	0.733±0.004±0.005	Peterson
X Noor	<x<sub>B(L)></x<sub>	Model

- Model independent:
- Channel-by-channel acceptance corrections ε and resolution matrix G from MC simulation using a starting D(x)
- Calculate D(x) from data:

$$D(x_b^{true}) = \varepsilon^{-1}(x_b^{true}) \cdot G(x_b^{true}, x_b^{reco}) \cdot D^{data}(x_b^{reco})$$

Use new D(x) to calculate ε and G again (iterative procedure)

Model independent results

SLD b-hadron selection

Topological vertex algorithm assigns charged tracks to secondary vertex

⇒
$$\varepsilon_b$$
 ≈ 92%, P_b ≈ 98%
b flight direction
estimated from PV and
SV positions

Missing P_T used to correct vertex mass:

$$M = \sqrt{M_{ch}^2 + P_T^2 + |P_T|}$$

 $\varepsilon_b \approx 44\%$, P $\approx 98\%$

High purity b sample

b-hadron energy

Missing energy:

$$E_0 = \sqrt{M_0^2 + P_{0L}^2 + P_T^2}$$

missing particles

Poly Poly Poly Charged tracks

B flight direction

charged tracks

Missing mass constrained by: $M_0^2 \le M_{0\text{max}}^2 = M_B^2 - 2M_B \sqrt{M_{ch}^2 + P_T^2 + M_{ch}^2}$

Equality holds for P'_{0L}= 0 in b rest frame

But P'_{0L} << P_T more probable because of phase space

$$M_0^2 \approx M_{0\text{max}}^2$$

b-hadron energy (2)

4164 candidates for 97-98 data (1920 for 96-97)

Test of fragmentation models

Good description of data by:

JETSET + Bowler

JETSET + LUND

JETSET + Kartevelishvili

SLD result

Unfolding performed using the 4 consistent models

4 functional forms consistent with x_b distribution

 $< x_b(wd) > = 0.710 \pm 0.003 \text{ (stat)} \pm 0.005 \text{ (syst)} \pm 0.004 \text{ (model)}$

Systematic error dominated by p, resolution uncertainty

Summary

Conclusions

Two new preliminary analyses of x_b spectrum:

- Improved sensitivity to distinguish between fragmentation
- New measurements of <x_b>:

ALEPH

$$< x_B(wd) > = 0.7304 \pm 0.0062 \text{ (stat)} \pm 0.0058 \text{ (syst)}$$

SLD

$$< x_b(wd) > = 0.710 \pm 0.003 \text{ (stat)} \pm 0.005 \text{ (syst)} \pm 0.004 \text{ (model)}$$

really measure the same thing? These two results are slightly inconsistent, but do the they